
ptg16707593

ptg16707593

 Android™ Development
Patterns

ptg16707593

This page intentionally left blank

ptg16707593

 Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
 Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi

 Mexico City • São Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

 Android™ Development
Patterns

Best Practices for
Professional Developers

 Phil Dutson

ptg16707593

 Editor-in-Chief

Mark Taub

 Executive Editor

Laura Lewin

 Development Editor

Sheri Replin

 Managing Editor

Kristy Hart

 Project Editor

Elaine Wiley

 Copy Editor

Bart Reed

 Indexer

Tim Wright

 Proofreader

Laura Hernandez

 Technical Reviewers

Romin Irani
Douglas Jones
Raymond Rischpater

 Editorial Assistant

Olivia Basegio

 Cover Designer

Chuti Prasertsith

 Compositor

Nonie Ratcliff

 Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

 The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

 For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.
com or (800) 382-3419.

 For government sales inquiries, please contact governmentsales@pearsoned.com .

 For questions about sales outside the U.S., please contact intlcs@pearson.com .

 Visit us on the Web: informit.com/aw

 Library of Congress Control Number: 2015958569

 Copyright © 2016 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, request forms and the appropriate contacts within
the Pearson Education Global Rights & Permissions Department, please visit www.
pearsoned.com/permissions/ .

 Google Play is a trademark of Google, Inc.

 Android is a trademark of Google, Inc.

 ISBN-13: 978-0-133-92368-1
 ISBN-10: 0-133-92368-1

 Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.

 First printing: February 2016

http://www.pearsoned.com/permissions/
http://www.pearsoned.com/permissions/

ptg16707593

❖

 To all of those who believe in magic,
especially the digital kind.

❖

ptg16707593

This page intentionally left blank

ptg16707593

viivii

Contents

 Preface xiv

 1 Development Tools 1

Android Studio 1

Installing Android Studio 2

Using Android Studio 4

Starting a New Project 6

Standalone SDK Tools 9

Android Device Emulation 10

Android Virtual Device 11

GenyMotion 12

Xamarin Android Player 13

Version-Control Systems 14

Subversion 14

Git 14

Mercurial 15

Summary 15

2 Testing and Debugging 17

Unit Testing 17

Integration Testing 20

Debugging 25

Profiling 25

Tracing 27

Messaging 29

Summary 32

 3 Application Structure 33

Manifests 34

Java 36

Res (Resources) 37

Drawable 37

Layout 39

Menu 39

ptg16707593

viii Contentsviii Contents

Values 40

Other Resources 41

Gradle 41

Summary 42

 4 Components 45

Intents 45

Intent Filters 46

Broadcast Receivers 47

Activities 48

Creating an Activity 48

Activity Lifecycle 49

Fragments 52

Creating a Fragment 52

Communicating with Fragments 55

Loaders 56

Summary 58

 5 Views 59

The View Class 59

The AnalogClock Subclass 60

The ImageView Subclass 60

The KeyboardView Subclass 60

The MediaRouteButton Subclass 62

The ProgressBar Subclass 62

The Space Subclass 64

The SurfaceView Subclass 64

The TextView Subclass 65

The TextureView Subclass 65

The ViewGroup Subclass 66

The ViewStub Subclass 68

Creating a Custom View 68

Summary 70

ptg16707593

ixix

 6 Layout 71

Layout Basics 71

Layout Measurements 72

Layout Coordinates 73

Layout Containers 74

Linear Layout 74

Relative Layout 76

Table Layout 79

Frame Layout 80

WebView 82

Summary 83

 7 App Widgets 85

App Widget Layouts 86

The AppWidgetProviderInfo Object 88

App Widget Sizing 89

Update Frequency 90

Preview Image 90

Widget Category 92

Widget Category Layout 92

Resizable Mode 93

Sample AppWidgetProviderInfo Object 93

The AppWidgetProvider Class 94

Application Manifest Entries 96

Summary 97

8 Application Design: Using MVC 99

Model 100

View 101

Controller 102

Working Asynchronously 104

AsyncTask 105

Summary 106

Contents

ptg16707593

xx

9 Drawing and Animation 107

Graphics 107

Bitmaps 107

NinePatch 109

Drawables 111

OpenGL ES 114

Animation 117

View Animation 117

Property Animation 118

Drawable Animation 122

Transition Framework 123

Summary 125

 10 Networking 127

Accessing the Internet 127

Network Detection 127

Using an HTTP Client 129

Parsing XML 131

Handling Network Operations Asynchronously 133

Volley 135

Summary 138

 11 Working with Location Data 139

Permissions 139

Google Play Services Locations API 148

Summary 153

 12 Multimedia 155

Working with Audio 155

Audio Playback 156

Audio Recording 159

Working with Video 161

Video Playback 162

Summary 165

Contents

ptg16707593

xixi

 13 Optional Hardware APIs 167

Bluetooth 167

Enabling Bluetooth 168

Discovering Devices with Bluetooth 169

Connecting via Bluetooth Classic 171

Communicating with BLE 173

Near Field Communication 176

ACTION_NDEF_DISCOVERED 177

ACTION_TECH_DISCOVERED 178

ACTION_TAG_DISCOVERED 179

Device Sensors 181

Detecting the Available Sensors 182

Reading Sensor Data 183

Summary 185

 14 Managing Account Data 187

Getting Accounts 187

Android Backup Service 188

Using Google Drive Android API 191

Using Google Play Games Services 195

Working with Saved Games 196

Summary 199

 15 Google Play Services 201

Adding Google Play Services 201

Using Google API Client 203

Google Fit 207

Enable API and Authentication 207

App Configuration and Connection 208

Nearby Messages API 209

Enabling Nearby Messages 209

Sending and Receiving Messages 210

Summary 214

 16 Android Wear 217

Android Wear Basics 217

Screen Considerations 218

Contents

ptg16707593

xiixii

Debugging 221

Connecting to an Emulator 221

Connecting to a Wear Device 222

Communicating with Android Wear 224

Notifications 224

Sending Data 226

Summary 228

 17 Google Analytics 229

Adding Google Analytics 229

Google Analytics Basics 232

Events 233

Goals 234

Ecommerce 235

Custom Timings 235

Custom Dimensions 236

Custom Metrics 236

Summary 237

 18 Optimization 239

Application Optimization 239

Application First 239

Application Logging 241

Application Configuration 242

Memory Management 243

Garbage Collection Monitoring 245

Checking Memory Usage 245

Performance 247

Working with Objects 247

Static Methods and Variables 248

Enhanced for Loops 248

float, double, and int 249

Optimized Data Containers 249

Summary 249

Contents

ptg16707593

xiiixiiiContents

 19 Android TV 251

The Big Picture 251

Ten-Foot View 252

TV Capabilities 254

Text, Color, and Bitmaps 255

Building an App 258

Emulation and Testing 261

Summary 263

 20 Application Deployment 265

Preparing for Deployment 265

Production Checklist 266

Certificate Keys 266

Contact Email 266

App Website 267

External Services or Servers 267

Application Icon 267

Licensing 268

Appropriate Package Name 268

Verifying Permissions and Requirements 269

Log and Debug Removal 270

Removal of Excess Unused Assets 270

Preparing for Google Play 270

Application Screenshots 271

Promo Video 271

High-Res Icon 271

Feature Graphic 272

Promo Graphic 272

Banner for Android TV 272

Getting Paid 272

APK Generation 273

Summary 274

 Index 275

ptg16707593

 Preface
 The growth of Android since the launch of Cupcake has been astonishing. Today, Android
powers more than just mobile phones; it has become the go-to solution for manufacturers of
audio equipment, tablets, televisions, cars, and more.

 As the use of Android becomes more prevalent, the demand for developers who are familiar
with using it has also scaled. Developers who understand how the system can be built,
leveraged, and used are necessary to provide the next wave of amazing and must-have
applications.

 Many people around the world are being introduced to Android for the first time, and we as
developers need to make sure to provide them with a first-class experience that will put a smile
on their face and help them understand how truly amazing the Android system is.

 Why Development Patterns?

 In the fast-paced world of development, patterns are the time-saving solutions that developers
use and access to maximize their output and minimize time wasted creating a solution that will
ultimately fail.

 Android development is a special place that is both familiar and foreign to many Java and
object-oriented programmers. The relationship it has with the Java language and structure helps
to bring in developers who have experience and get them up to speed in an almost effortless
manner. However, there are some optimizations and memory-handling techniques that are not
optimal for the seasoned Java developer.

 This particular book is the bridge that helps seasoned developers understand the Android
way of building and thinking. It is written so that those new to Android development gain
a foundation for the platform and how to work with the many facets and intricacies that
Android brings to the table while giving some in-depth hints and strategies that advanced
developers will need to make their app a success.

 Who Should Read This Book?

 Anyone interested in how Android development works should find this book enjoyable and
helpful. Those just beginning their Android journey may not find this as complete of a volume,
but some development experience will help; however, those who are tenacious and don’t mind
getting elbows-deep should find this to be an acceptable companion on their quest toward
their perfect app.

 Those who are interested in seeing only theoretical development patterns with large
explanations about individual bit-shifting and hand-tuning memory management will be
disappointed in that this book instead focuses on how Android works together piece-by-piece
with example snippets that help solidify how things should be accomplished in a best-practices
manner.

ptg16707593

xvPreface

 Getting Started

 For those new to developing Android applications, the minimum requirement is a computer
running either OS X, Windows, or Linux. On these systems, you should download Android
Studio from http://developer.android.com/sdk/ . Android Studio comes with the Android SDK.

 Full use of the Android SDK requires downloads of the version and sample code for which you
want to develop. Although you can certainly download only a specific version of Android, you
should download all versions of Android on which you want your app to work.

 You should also use the Android SDK to download system images of emulators or Android
Virtual Device (AVD) files. These system images allow you to test your app without actually
having an Android device.

 It is highly recommended that you acquire at least one Android device for testing, with a
preference of having multiple devices in many form-factors so that you can accurately test,
monitor, and experience your app as your users will.

 Visit the following websites to keep up on Android and see when new features are introduced
and how to use them:

■ StackOverflow : http://www.stackoverflow.com/

■ Official Android Developer Site : http://developer.android.com/

■ Android Developers Blog : http://android-developers.blogspot.com/

■ Google Developers on YouTube : https://www.youtube.com/user/androiddevelopers

■ Android Source Code (AOSP) : http://source.android.com/

 Book Structure

 This book starts with the basics of Android development, including how to set up an
environment. It takes you through the importance of creating a proper development flow and
adding testing to your app to make sure your code performs and behaves the way you expect.

 It continues step by step through the various pieces and parts that make up the Android
framework. This includes how applications are structured, using widgets and components, and
learning how to use and create views.

 You are then introduced to application design paradigms and learn how to make sure you
are creating an app that you can manage and update easily. This includes adding media and
network connections that will not end up wasting precious battery power and giving users the
most accurate and up-to-date information possible.

 Optional hardware components, Android Wear, and Android TV are also covered later in this
book to expose you to taking your app to the next level and exploring new opportunities. As
Android finds itself being included in more devices, you’ll understand how and why it is in
your best interest to provide apps to users who invest in these platforms.

http://developer.android.com/sdk/
http://www.stackoverflow.com/
http://developer.android.com/
http://android-developers.blogspot.com/
https://www.youtube.com/user/androiddevelopers
http://source.android.com/

ptg16707593

xvi Preface

 Finally, you learn about some key optimization strategies as well as how to package your app
for distribution through enterprise systems, email, and the Google Play Store.

 When you are finished with this book, you will have an understanding of how the Android
system works and, more importantly, how to craft an app that is optimized, distributed, and
enjoyed by what will hopefully be millions of users.

 Register your copy of Android Development Patterns at informit.com for convenient access
to downloads, updates, and corrections as they become available. To start the registration
process, go to informit.com/register and log in or create an account. Enter the product ISBN
 9780133923681 and click Submit. Once the process is complete, you will find any available
bonus content under “Registered Products.”

ptg16707593

 Acknowledgments

 Creating a book is a monumental effort that is never accomplished without the help, effort,
guidance, and diligence of a small band of heroes. I could never have completed this work
without the correction of three of the greatest technical editors in the field today. Massive
thanks, a hat-tip, and cheers go to Romin Irani, Douglas Jones, and Ray Rischpater for each
bringing a personal penchant of perfection to the book and making sure I didn’t stray too far
off the established path.

 I also give an enthusiastic thanks to my development editor, Sheri Replin. Sheri has been great
to work with, and she tolerates the brief moments of madness I have where I am certain that
the words I have chosen make complete sentences when they are actually the inane babble
of a caffeine-deprived developer. Also, credit is due to my amazing copy editor, Bart Reed. He
miraculously managed to properly apply a clever and intelligent sheen to my stark ravings,
making the book read as it originally sounded in my head, as well as making it clear to the
reader.

 As always, the world-class team at Pearson deserves more thanks than I believe they get.
Specifically, I would like to call out Laura Lewin, Olivia Basegio, Elaine Wiley, Kristy Hart,
Mark Taub, and the entire production staff. The steps that are taken to create these volumes of
technical instruction do not happen overnight, and these fine folks have undergone hours of
meetings, emails, phone calls, and more to make sure that you get the greatest-and-latest book
possible.

 I want to thank my family for letting me disappear almost every night and every weekend for
the past year. It has been an epic struggle keeping the book on schedule, working a sometimes
more-than-full-time job, and also making sure that I attend the activities that matter most with
them. I believe that it is all of you who have let me keep a pretty good work-life-book balance.

 Finally, I thank you! Thank you for picking up this book and giving it a place on your shelf
(digital or otherwise). With all the amazing people I have had the opportunity to work
with, I believe we have crafted a book that will get you on the best path to creating Android
applications that will be used for years to come.

ptg16707593

 About the Author

 Phil Dutson is a Solution Architect over client-side and mobile implementation for one of
the world’s largest e-commerce retailers in fitness equipment. He has been collecting and
developing for mobile devices since he got his hands on a US Robotics Pilot 5000. He is the
author of Sams Teach Yourself jQuery Mobile in 24 Hours (Sams, July 2012), jQuery, jQuery UI, and
jQuery Mobile: Recipes and Examples (Pearson, November 2012), Android Developer’s Cookbook,
Second Edition (Pearson, July 2013), and Responsive Mobile Design (Addison-Wesley Professional,
September 2014).

ptg16707593

 1
 Development Tools

 The toolset of choice for Android development has changed over the last few years. Once, the
Eclipse IDE was the integrated development environment (IDE) of choice, but we now stand at
the changing of the guard where the now fully support Android Studio is the current weapon
of choice for developers. In this chapter, you learn about Android Studio, how to get the stand-
alone SDK tools, various Android emulators, and version-control systems that are used with
Android development.

 Android Studio

 Many Android developers have used or have had some experience with the Android
Development Tools (ADT) bundle. This package, provided by the Android team, consisted of
the Android SDK and the Eclipse IDE, which was used to help developers create rich Android
applications on software that many Java developers were already using.

 On May 15 th , 2013, at the Google I/O developer conference, Android Studio was announced.
This new toolset is composed of several additions aimed at making Android development
easier, faster, and better than the ADT bundle that it replaced. Initially, it was released as a beta
project but is now the officially supported platform from Google for Android development.

 Android Studio is based on the JetBrains IntelliJ IDEA platform. This IDE has many new-and-
improved features that the Android team feels better suits the development of Android applica-
tions. Features such as auto-save on every keystroke, the ability to separate the build process
from the application, and smart auto-complete and import help developers create their applica-
tions faster and make them less reliant on complicated workspace setups and less worried about
potential data loss.

 Android Studio also comes as an installation instead of a packed file. This allows closer ties to
the operating system on which it is installed, making it easier for developers to install without
having to manually unpack and manage the SDK and IDE on their file system.

 The new Gradle build system allows for a much easier build process that gives control back to
developers and makes project collaboration much easier. On the surface, it appeared that any

ptg16707593

2 Chapter 1 Development Tools

Android project could be exported or checked into a code repository without any problems.
However, when another developer checked out the project, there were occasions when different
versions of the support library, SDK tools, or even the project build target would include differ-
ent .jar files, making the project fail to compile and bringing development to a complete halt.

 With the new Gradle-based build system, compiled .jar files are created and included as needed
from the installed SDK. This greatly speeds up team collaboration because projects can now
be passed through a code repository without worrying about specific versions of the compiled
support .jar files or similar .jar files being sent separately to the developer to allow the project
to be built.

 Installing Android Studio

 Android Studio is available for Windows, Linux, and OS X. You can download the current
version of Android Studio from http://developer.android.com/sdk/ . The website attempts to
detect your currently installed operating system and give you a downloadable installation file.
If you are using a different computer than the one on which you plan on running your install,
you can download different versions of the Android Studio installation file under the Other
Download Options section of the site.

 Once you have selected to download Android Studio, you are moved to a new page asking
you to read the terms and conditions of the download. After reading the terms thoroughly
and checking the Agree box, you are then allowed to download the installation file. When the
download is complete, you can run or execute the file to begin installation.

 Note

 If you are on a metered or cellular connection, you should find a broadband connection before
attempting your download because the installation file may be over 200MB. Even if you man-
age to download the executable when Android Studio is installed, it will check for and install
updates as well as portions of the Android SDK, which can add more than 2GB of data.

 Unlike in previous installations where an application was uncompressed to your file system,
 Figure 1.1 shows the execution of the Android Studio installation file when executed on OS X.

 During either the installation process (Windows) or when you open Android Studio for the first
time (OS X), you will be walked through the SDK wizard. Because Android requires Java, you
will be asked for the path to the Java 7 or higher Java Development Kit (JDK). Currently Java 7
is the preferred version of Java used with Android development, so you should download the
latest version 7 release possible. Note that you must have the JDK installed and not the Java
Runtime Environment (JRE). The JDK does contain the JRE, but it also contains extra compo-
nents that are used by Android Studio for compiling Java code and resources. The currently
installed JDK will attempt to be located automatically by the installation process, but if it is not
found you may download the JDK by visiting http://www.oracle.com/technetwork/java/javase/
downloads/ .

http://developer.android.com/sdk/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/

ptg16707593

3Android Studio

 Once you install the proper JDK, you can continue through the setup process. Most develop-
ers should be fine with the default installation options; however, if you want to know exactly
where and what is being installed on your system, you may opt for the Custom installation.
The Custom installation path allows you to choose to install the Android SDK, the Intel HAXM
emulation enhancement, and an optimized Android Virtual Device (AVD). You are also given
the option to change the installation path of the Android SDK on your system. The standard
installation installs the SDK, the Intel HAXM, and the AVD.

 The wizard asks you to accept more terms and conditions and then begins downloading the
necessary components to give you a fully functional workbench that you will use to get your
Android application started.

 Note

 If you have been using the ADT Bundle as your main development IDE, you should migrate
your current project as soon as possible by following the migration guides available at
http://developer.android.com/sdk/ . You can still use the ADT bundle if you want, but it is
no longer under official support, and if you run into problems you will be on your own.

 For the official migration instruction visit http://developer.android.com/sdk/installing/
migrate.html .

 Figure 1.1 Android Studio is now installed like a standard application in OS X. You just drag the
application to your Applications folder.

http://developer.android.com/sdk/
http://developer.android.com/sdk/installing/migrate.html
http://developer.android.com/sdk/installing/migrate.html

ptg16707593

4 Chapter 1 Development Tools

 When the wizard finishes the download, you are shown the Welcome screen of Android Studio.
You should now be able to start using Android Studio.

 Using Android Studio

 Unlike with the ADT Bundle, when Android Studio is launched, you are not taken to a work-
bench; instead, you are shown a Welcome screen. Figure 1.2 shows the Welcome screen.

 Figure 1.2 The Welcome screen of Android Studio v1.0.1. Even newer versions such as 1.4
have remained the same.

 As you begin to develop a project, the Recent Projects list populates and you can choose a
project to begin working on it. To begin a new project, you can use the Start a New Android
Studio Project button in the Quick Start section.

 Occasionally, you may find that some projects are not listed in the Recent Projects list. When
this happens you should use the Open an Existing Android Studio Project button to locate the
project and open it.

 If you are new to Android development or if you want to see some examples on specific
portions of Android development, you can click Import an Android Code Sample. This starts
a download that will grab a list of sample projects that you can open to look at to help with
understanding how different pieces of the Android system interact and are used for application
building.

ptg16707593

5Android Studio

 If you have a project that was created using ADT, you can attempt to import it by choosing
Import Non-Android Studio Project and choosing the project folder. Android Studio will then
attempt to convert the project into an Android Studio project. If your migration runs into
issues, you may need to export the project from ADT or generate a build.gradle file before
attempting to import.

 If you need to update your SDK tools, you can do so through the SDK Manager. This is acces-
sible by clicking the Configure button and choosing SDK Manager on the pane that slides in.
If you are already working inside a project, you can open this by clicking Tools, Android, SDK
in the menu. This launches a new window that checks for updates for the Android SDK. If any
are found, you are prompted to update and install them. Figure 1.3 shows the Android SDK
Manager window with some packages ready to be installed.

 Figure 1.3 The Android SDK Manager is used to install and update components of the
Android SDK.

 Many extra components and packages can be installed by using the Android SDK Manager. If
you find that you cannot create or open some projects, it may be due to missing packages. This
is a good place to start when trying to troubleshoot problems with compiling, importing, or
opening projects.

ptg16707593

6 Chapter 1 Development Tools

 Starting a New Project

 Clicking the Start a New Android Studio Project button starts the new project wizard. The first
page lets you configure the initial settings of your project. The name of your application is
set here as well as your package name. In order to help you create packages properly, Android
Studio has you enter a company domain. This helps ensure that applications do not overlap
and cause potential conflicts due to having the same package name. If you have a specific loca-
tion that you want to save your project, you can also change the default location.

 Clicking the Next button allows you to choose what your application will target. Note that
you are not limited to creating an app that will only work on a watch, TV, or mobile device.
If you want your application to work on multiple devices, you should check the box next to
the platform you wish to support. When you check a platform, you will then be able to choose
which API level you require to run your application. Android Studio updates to grab the current
Android fragmentation lists to give you a percentage of how many devices your application will
be compatible with. This useful metric may help you decide how you will build your applica-
tion and give you an idea of how many Android users will be able to run your application.

 Clicking Next moves you to the Activity-selection screen. If you plan on building your own UI,
you will probably want to select the Blank Activity option. If you already know that you will
need a different type of Activity, you can select it here to have it added for you.

 Clicking Next moves you to a screen allowing you to choose options for the Activity you chose
on the previous page. Options here allow you to change the Activity name, the layout name,
as well as the title and other potential options, such as menu resource names, fragment names,
object kinds, and more. Once you have filled out everything to your satisfaction, click Finish to
be taken to the main IDE screen.

 Note

 If you see errors about your project being unable to build, Gradle having missing components,
or another similar message, you should see an option to “retry the operation.” If you retry and
the process fails again, you should check your JDK build path. Some systems will default to
the first version of Java that is found on your system. If you are working with Lollipop, you must
have Java JDK 7 or higher; pointing the IDE to the newer JDK location should fix your build
problems.

 When the project opens you will be shown your activity .xml file. Figure 1.4 shows the Design
view of activity_main.xml , which is the main layout file that was created as a new project
using the Blank Activity option.

 The Design view is used for drag-and-drop development. A list of layouts, widgets, and various
components can be dragged on to the Android device, and the view will be updated to show
what will happen when they are added. Even if you decide not to use the drag-and-drop inter-
face and instead code in all of your components, they will be rendered in this view so that you
can see how your project will look.

ptg16707593

7Android Studio

 The right side of the Design view gives you a component tree of the components that have
been added to the activity as well as a Properties section. The Properties section can be used to
adjust components by tweaking various settings. Note that some properties can be
changed to use hard-coded values rather than the ones created in a resources file such as
 strings.xml . This may not seem to be an issue at first, but it can snowball into a massive
update effort when you decide to take your application global and need to localize all the text
used in your application.

 The middle section will initially be set to show you a default device based on what your appli-
cation is targeted for. If you are developing a phone or tablet application, then a phone will
displayed. This can be changed by using the option buttons above the device. A drop-down will
list the current “skin” and will allow you to change to another device. This is extremely useful
to see how different devices will handle the layout of your components. You can also change
and modify the AppTheme as well as which Activity you want to view and the API level.

 Note

 The Design view is a preview of what your application will probably look like when run on an
Android device. However, it may not always be 100% accurate, especially on every Android
device. Whenever possible, test on as many actual devices as you can, as well as on software
emulators.

 Figure 1.4 The activity_main.xml file is open in the Design view.

ptg16707593

8 Chapter 1 Development Tools

 After you are done playing with the visual aspects of your Activity, click the Text tab at the
bottom of the window. This changes the view to let you view the actual nodes and elements
that make up your Activity XML file. As a reminder, you do not have to use the Design mode;
if you are comfortable, you can code the entire Activity directly into the XML. A Preview pane
is available to show you what is happening when you add and remove code to and from the
Activity XML. Figure 1.5 shows a button that has been added to the Text view and is rendered
in the Preview pane.

 Figure 1.5 A button has been added and is displayed in the Preview pane.

 Android Studio extends the IntelliJ platform, giving you the features you may already be used
to as well as several new options, including the following:

■ Auto-save functionality

■ Customizable panel and pane arrangement

■ Code linting

■ Syntax highlighting

■ Automatic imports for classes

■ ADB integration

■ LogCat integration

ptg16707593

9Standalone SDK Tools

■ Maven and Gradle build options

■ File Commander

■ Event Log

■ Memory Monitor

■ GitHub integration

■ Bookmarks and breakpoints

 You can learn more about the features of the IDE by reading the documentation for IntelliJ
IDEA at https://www.jetbrains.com/idea/documentation/ .

 This is done by going to the application menu and clicking File, Close Project. This immedi-
ately closes the project you are working on as well as the IDE and displays the Welcome to
Android Studio window.

 If you decide that you do not need Android Studio or are only interested in some of the tools
bundled in the Android SDK, you may be interested in downloading and using the standalone
SDK tools.

 Standalone SDK Tools

 You are not required to use Android Studio to develop Android applications. Other IDEs are
available, and some IDEs offer an Android plugin that will handle compiling and publishing an
application, provided it has access to the Android SDK.

 If you find that you only need the Android SDK, you can download it as a compressed file from
the download page at http://developer.android.com/sdk/ . The download will be labeled as SDK
Tools Only or as Other Download Option on the page.

 If you are using Windows for development, you should still download the executable instal-
lation file instead of a compressed .zip file. The installation will give you easier access to the
Android SDK Manager and other tools that you will need to use to keep your installation up
to date. Be sure to take note of where you install the tools on your system so that you can add
them to your system path, or reference them when using the command-line tools.

 The standalone Android SDK Tools does not contain a complete tools install. It contains only a
few folders, a readme file, and a Tools directory that you will use to download the pieces of the
Android SDK that you want to work with.

 To get started developing, you must download a version of Android as well as the Platform-
tools. You can complete this by navigating into the Tools directory that’s executing the
Android program.

https://www.jetbrains.com/idea/documentation/
http://developer.android.com/sdk/

ptg16707593

10 Chapter 1 Development Tools

 Note

 The entire Android SDK is several gigabytes in file size. To cut back on how much a developer
needs to download in order to get started developing, the downloads have been separated into
sections. These sections will help you reduce how much bandwidth you need to get started, but
an Internet connection will be needed during development as patches, samples, and updates
are posted to the download repository.

 When you execute the android command, the Android SDK Manager will be launched. If you
get an error message or nothing appears, you need to make sure you have Java installed. Linux
users may need to install Java through a package manager (such as apt-get). Figure 1.6 shows
the Android SDK Manager window launched on OS X via the android command.

 Figure 1.6 The Android SDK Manager is used to update the SDK as well as offer new packages.

 After you download all the components and packages that you selected, you are ready to start
using the Android SDK. Note that using the standalone SDK is best suited to advanced develop-
ers who are already familiar with building projects or ones who need specific tools such as adb
and dmtracedump .

 Android Device Emulation

 It would be practically impossible for any developer to have every device that Android runs
on in their office to use for live device testing. This is where an Android emulator can come
into play.

ptg16707593

11Android Device Emulation

 Emulators allow developers to get a rough idea and feel for how an application is going to
behave on a specific version of Android. As a developer, it gives you the opportunity to tune,
tweak, and alter device settings such as system memory, screen size, screen dpi, and even some
sensor information. Using an emulator is no excuse for skipping live device testing, but it
certainly can be a boost to developers who would otherwise be unable to test their applications
on device models that they do not actually have.

 Android Virtual Device

 The Android Virtual Device (AVD) is the emulator available through the Android SDK. AVDs
are managed through the AVD Manager, which can be launched directly from Android Studio
by finding the icon for AVD Manager. Alternatively, you can launch it from the command line
by navigating to the “tools” directory of your Android SDK and executing android avd .

 Note that when you use the android avd command, the manager launched will be differ-
ent from the AVD Manager launched from Android Studio. To launch the AVD Manager from
Android Studio, you can either click the AVD Manager button or select Tools, Android, AVD
Manager.

 By launching the AVD Manager from Android Studio, you can see what virtual devices are
currently available for use. If you have not created a virtual device yet or if a default virtual
device is not available, you need to click the Create Virtual Device button to launch the config-
uration wizard. The wizard will allow you to create a virtual phone, tablet, Wear device, or TV.
After selecting the type of device you would like to emulate, you can then choose to create a
new hardware profile, import a hardware profile, clone a device, or continue the setup.

 Cloning a device creates a copy of the basic settings and allows you to change the device skin.
If you choose a device that already exists and click the Next button, you are given the option
of choosing the version of Android as well as the chip architecture that the emulator will run
on. Clicking the Next button shows you a page that allows you to name the AVD, shows you a
summary of the device settings, lets you adjust the scale of the device, and gives you the choice
of either using your GPU to help with processing or creating a snapshot of the device that will
be used for a faster boot time. You can only use one of these settings at a time, so you need
to decide whether having a fast boot or having potentially better performance while using the
emulator is more important to you. You can always edit the AVD later to use the other option
if you find that one option is not working out for you.

 Note

 Scaling the device can be useful for developers who are working on laptops or smaller screen
devices that may not be able to accurately demonstrate the raw pixel resolution of modern
Android devices. If you select “Auto” for scale, your emulator will adjust itself as best as it can
to fit your screen.

 When you finish modifying your AVD, you can click the Finish button to complete the wizard
and wait while the AVD is created and stored. To start an AVD, click the Play button, and

ptg16707593

12 Chapter 1 Development Tools

the emulator window will appear with a skinned AVD. Figure 1.7 shows an AVD of a Nexus 6
running.

 Figure 1.7 The AVD has scaled the displayed resolution to fit my screen and has been skinned
to match a Nexus 6.

 GenyMotion

 GenyMotion is another Android emulator that uses Oracle VM VirtualBox as a platform for
launching and controlling Android images. When using GenyMotion, the first thing you might
notice is how fast the emulator is. By leveraging a different VM process than AVD, you are
given an emulator that achieves a near real-time response.

 To get started with GenyMotion, you should first download Oracle VM VirtualBox by visiting
 https://www.virtualbox.org/wiki/Downloads and downloading the binary package for your
system. After downloading and installing the package, you can then get the GenyMotion instal-
lation file from https://www.genymotion.com/ .

 GenyMotion is available for developers under various license agreements. If you are just going
to try GenyMotion, you can use the Free license, which grants you access to a limited emulator
that lets you launch an application but will not grant you priority support and will not give
you the right to use the emulator for commercial projects.

https://www.virtualbox.org/wiki/Downloads
https://www.genymotion.com/

ptg16707593

13Android Device Emulation

 The Business license will give you many more options, such as multi-touch, screen-casting, Java
API access, and priority support. This is not a fixed cost, but is sold as a subscription.

 There is also an Indie license that is available for developers who want to use all of the features
of GenyMotion but do not have a company or business to reimburse the cost and who only
have one or two developers.

 When trying GenyMotion, you should start with the Free license to get a taste and then move
to either an Indie or Business license, as your situation allows. You should also know that
GenyMotion has plugins for both IntelliJ and Eclipse, allowing you to use it inside of Android
Studio as your emulator of choice.

 After you have installed Oracle VM VirtualBox and GenyMotion, you can launch the
GenyMotion application. When it launches for the first time, you will be asked if you would
like to download an emulator. If you want to download one of the pre-built and tuned emula-
tors, you should click the Yes button. You will then be prompted for a login. GenyMotion does
require that you register with them in order to download emulators. Note that registration is
easy and is required when managing your license.

 After entering in your user information, you will be able to choose what emulator you would
like to download. To help you quickly get the one you want, you can use the sorting options
for API level and device type. Continuing through the emulator-creation wizard will start a
download of the device you have picked. When the image download has completed, you can
launch your emulator by selecting it and clicking the Start button.

 GenyMotion is definitely worth checking out, especially if you need to have a fast emulator
that will run as fast as a physical device.

 Xamarin Android Player

 Xamarin is typically thought of as the framework used for cross-platform or as the go-to solu-
tion for writing Android applications with C#. Xamarin has also released an emulator that can
pair with any IDE or development solution that uses adb .

 The Xamarin Android Player is not as full featured as other emulation options; however, it is
under active development, with features being added as development continues. It currently
runs in a similar fashion to GenyMotion, which means that it requires Oracle VM VirtualBox
installed for use. Unlike with GenyMotion, if Oracle VM VirtualBox is not already installed
on your system, it will be downloaded and the installation started for you. For information
about the installation process and using the program, you should visit the Xamarin Android
Player documentation page at http://developer.xamarin.com/guides/android/getting_started/
installation/android-player/ .

 Because Android Player is a solution from Xamarin, you must have an active Xamarin.
Android trial or subscription in order to use it. Windows (both 32- and 64-bit) and OS X
(10.7+) are both supported. You can learn more about the Xamarin Android Player by visiting
 https://xamarin.com/android-player .

http://developer.xamarin.com/guides/android/getting_started/installation/android-player/
http://developer.xamarin.com/guides/android/getting_started/installation/android-player/
https://xamarin.com/android-player

ptg16707593

14 Chapter 1 Development Tools

 Version-Control Systems

 The need for using a code repository should seem pretty straightforward, but for some develop-
ers it may take a hard-drive failure or an accident for them to realize why having a code storage
solution is a must when developing.

 Many types of code repositories are available, including CVS, SVN, Git, Mercurial, and others.
The following is breakdown of a few code repository solutions that are available for use with
your Android development.

 Subversion

 Subversion (https://subversion.apache.org/) is still a fairly common version-control system that
is compatible with several different clients. It was created in 2000 by CollabNet and is managed
by the Apache Foundation today. There are plugins for Eclipse, IntelliJ, and even plugins that
incorporate into the system shell. Subversion is commonly referred to as SVN and creates
“shadow” copies of every file that enters revision control. These files are used for comparison
and recovery; however, they take the same space as the actual file. This means that on your
system you will need twice as much space for your project when using SVN.

 There are several options for using SVN; some solutions are available through cloud storage
whereas others are available as an enterprise or in-house solution. Although SVN is generally
installed on a Linux server, there are some distributions, such as VisualSVN, that allow for your
SVN server to run in a Windows environment.

 Subversion offers the following features:

■ Ignore file list managed with an .svnignore file

■ Branches

■ Versioning

■ Merge tracking

■ Tagging

■ Command-line and client access

 Git

 Git (http://git-scm.com/) takes a different approach to version-control systems. Instead of being
reliant on having a centralized code repository, it distributes itself to each user. It was initially
created in 2005 by Linus Torvalds for Linux kernel development. In the time since, it has
become one of the most popular code repository systems.

 Although there is still a centralized location, each user creates a local “clone” of the remote
repository and works against the local version. This means that changes are committed locally
and when ready are “pushed” to the remote resource. The benefit is that users are able to work

https://subversion.apache.org/
http://git-scm.com/

ptg16707593

15Summary

abstractly and then send “pull requests” to the remote system when a fix or change is ready to
be added to the main repository.

 Git is available for free through the GNU General Public License version 2; however, you can
find online hosts that will offer personal storage with public projects or private hosting for
a fee.

 Git offers the following features:

■ Distributed repositories through cloning

■ Command-line and client access

■ Forking projects

■ Ignore file list through .git configuration

■ Context switching

■ Branching

 Mercurial

 Another option for your version-control system is Mercurial (http://mercurial.selenic.com/).
Mercurial runs quite similarly to Git in that each developer is given a local copy of the reposi-
tory to work with, only sending changes up to the remote location when branches or merges
are final.

 Mercurial is written in Python and has a client available for Windows, Linux, and OS X. Being
written in Python also makes the system extensible through plugins, which can be found on
the Mercurial wiki site or by writing your own.

 Mercurial offers the following features:

■ Distributed repositories

■ Branching

■ Merging

■ Workflows

 Summary

 This chapter introduced you to the tools you need to start developing Android applications.
You learned about Android Studio, the supported platform from the Android team that is based
on IntelliJ IDEA Community Edition. You learned about installing the standalone SDK tools
for use with your own IDE or build tools. You also learned that version-control systems can be
leveraged to help you keep your code in a safe state for recovery and sharing.

http://mercurial.selenic.com/

ptg16707593

This page intentionally left blank

ptg16707593

 2
 Testing and Debugging

 Testing and debugging are two important parts of developing for Android. These procedures
revolve around making sure that your application is trustworthy, dependable, and maintain-
able. By using various methods of testing, you can make sure that you are working with code
that does what you believe it should. By debugging your application, you can determine prob-
lems that may exist in your code, as well as get a glimpse into what is happening on the device
while your application is running.

 In this chapter, you learn about unit testing, integration testing, and using the debugging tools
that are available with Android Studio. This will give you an understanding of why testing is
important and how you can use it with your own applications.

 Unit Testing

 To some developers, unit testing is not just a suggestion; it is a vital part of the development
process. Without testing your code and knowing exactly what it will do and is capable of, you
are not be able to trust it.

 Generally, unit tests are written for specific modules of your code. Modules may include entire
classes or they may be as simple as testing a single function. You will be the one writing the
actual unit tests against your code, so you will probably want to adopt some of the creeds
of test-driven design. The following list of questions helps you get the most out of your unit
testing:

■ What is the purpose of this module?

■ What types of input will the module support?

■ What happens when invalid data is sent to the module?

■ Does this module return any data or objects?

■ Does the returned data or object require validation?

■ How can the result be reached in the simplest manner?

ptg16707593

18 Chapter 2 Testing and Debugging

 Unit testing goes further than just making sure that your code does what you believe it should.
It is a useful tool in validating your code when collaborating and working with others.

 When working on team projects, you may have a module that you know works but every time
you submit a pull request, synchronize, or otherwise check your code into your code repository,
you are informed from another team member that your module is broken and that you need to
fix it before it will be added to the master or main branch of your code repository.

 Even if you are absolutely sure that your module is fine, without running tests to prove
that your module works correctly, you may find yourself in an endless argument with other
members of your team that will waste your time and cause your project to be delayed while
the problem is resolved. By providing a test with your code, you can let other developers see
exactly how you have tested your module, and allow them an opportunity to provide a test of
their own that will help explain what they are expecting your module to be able to handle.

 To begin writing tests in your project, you need to make a few modifications to your project.
If your project does not already contain testing folders, you will need to create them in the
following path: app/src/test/java . This folder contains your test code, whereas the code you
want to perform the testing on should reside in the app/src/main/java folder.

 Having confirmed or created the folder structure, you can then modify the gradle.build file
of your app module to add support for JUnit. This can be done as follows:

 dependencies {
 // other dependencies
 testCompile 'junit:junit:4.12'
 }

 With the folder structure and dependencies taken care of, you can now write your test classes.
Test classes use annotations to declare test methods as well as to perform special processing.
The following shows a sample class with imports for JUnit as well as a method that uses the
 @Test annotation to designate the method as a testing method:

 import org.junit.Test;
 import java.util.regex.Pattern;
 import static org.junit.Assert.assertFalse;
 import static org.junit.Assert.assertTrue;

 public class EmailValidatorTest {

 // use @Test to specify a testing method

 @Test
 public void emailValidator_CorrectEmail_ReturnsTrue() {
 // using assertThat() to perform validation of email address
 assertThat(EmailValidator.isValidEmail("myemail@address.com"), is(true));
 }

ptg16707593

19Unit Testing

 // other testing methods and logic would continue here

 }

 Other annotations that you may be interested in using for testing are shown in Table 2.1 .

 Table 2.1 JUnit Annotations

 @Before Used to specify code that’s used to set up test opera-
tions that are invoked at the beginning of each test.
Note that multiple @Before blocks may exist but may
not be processed in specific order.

 @After Used to specify code that will be run at the end of every
test. This is used for cleanup purposes and should be
where any resources that were loaded into memory are
released.

 @BeforeClass Used to specify static methods that are used once per
test class. This should be used when performing expen-
sive operations such as connecting to databases.

 @AfterClass Used to specify static methods that should be used
after all other tests have been performed. If you previ-
ously used the @BeforeClass annotation to define
and use resources, you should use @AfterClass to
release the definitions and resources that were used.

 @Test Used to specify a method that’s used for testing. You
may have multiple test methods in your test class, with
each having the @Test annotation.

 @Test(timeout=<milliseconds>) Used to specify a timeout period where the test may be
considered to fail once the timeout has been reached.
If the timeout is reached and the method has not
returned yet, a failure will automatically be returned.

 After you create your test classes and methods, you can run them from Android Studio by
opening the Build Variants window. This can be done by using the quick access menu on the
left side of the screen, or by using the Build, Select Build Variant... menu. Once the window is
displayed, make sure that Test Artifact has the Unit Tests option selected. Your tests will then
be listed and can be executed by right-clicking the class or method you would like to run and
then selecting Run.

 When the test has completed running, the results will be displayed in the Run window. If you
require a full project that demonstrates how to integrate and use automated testing, you can
visit the official testing sample from Google via GitHub at https://github.com/googlesamples/
android-testing .

https://github.com/googlesamples/android-testing
https://github.com/googlesamples/android-testing

ptg16707593

20 Chapter 2 Testing and Debugging

 There are still other options for testing that can be leveraged to round out and complete your
testing strategy. The Robotium automation framework (https://code.google.com/p/robotium/)
is a well-tested and trusted framework that can be leveraged as a stand-alone component or as
an addition to your testing suite.

 Another option that you want to consider is Appium (http://appium.io/). Appium is a cross-
platform product that is closer to a set of automation libraries that can be used for native,
hybrid, and web applications. Appium is based on Selenium WebDriver and allows you to use
the language you are comfortable with to create and run tests, including Ruby, .NET, Java,
Python, JavaScript, Swift, Objective C, and more. If you are already comfortable with how
Selenium WebDriver works, this is definitely an option you will want to check out.

 Integration Testing

 After unit testing has been completed, integration testing takes things further by testing an
entire sequence of events, testing the user interface (UI) components, and potentially working
with various service providers for end-to-end testing.

 One of the ways you can perform integration testing is with monkeyrunner. The monkey-
runner app is a tool that executes Python scripts that can open or install an application on
an Android device through an ADB connection and then send keyboard and touch events as
well as take screenshots of the mayhem it creates while running. This can be a valuable tool in
creating an application that can stand programmatic stress testing and that will self-document
results through imagery. Listing 2.1 shows a sample Python script that you can create that
opens an application and sends button presses to it.

 Listing 2.1 Python Script That Can Be Used with monkeyrunner

 from com.android.monkeyrunner import MonkeyRunner, MonkeyDevice
 import commands
 import sys
 import os

 print "** MonkeyRunner Start"

 # Determine if screenshot directory exists, make if not
 # Note, this is made where this script is executed from
 if not os.path.exists("screenshots"):
 print "creating the screenshots directory"
 os.makedirs("screenshots")

 # Connect MonkeyRunner to the device
 device = MonkeyRunner.waitForConnection()

 # What app are we testing, install if not found
 apk_path = device.shell('pm path com.dutsonpa.debugexample')

https://code.google.com/p/robotium/
http://appium.io/

ptg16707593

21Integration Testing

 if apk_path.startswith('package:'):
 print "App Found."
 else:
 print "Installing App"
 device.installPackage('com.dutsonpa.debugexample.apk')

 print "Starting MainActivity"
 device.startActivity(component='com.dutsonpa.debugexample/com.dutsonpa.
 ➥debugexample.MainActivity')

 # Take a Screenshot
 MonkeyRunner.sleep(1)
 result = device.takeSnapshot()
 result.writeToFile('./screenshots/monkeyrunner_ss.png','png')
 print "Screenshot Taken"

 #sending an event which simulate a click on the menu button
 device.press('KEYCODE_MENU', MonkeyDevice.DOWN_AND_UP)

 print "** MonkeyRunner Finish"

 Note

 You must have Python installed on your system and have it in your system path so that the
script can be executed. You should also have the Android SDK in your system path so that
 monkeyrunner can be executed from your command line or terminal.

 Another testing tool you may find useful is the UI/Application Exerciser Monkey (Monkey).
Monkey runs similarly to monkeyrunner, but instead of being a Python script it is a command-
line application that you can configure and run on either an emulator or on a device.

 Monkey can simulate touch, click, gesture, directional, trackball, and similar device events.
When the application crashes, performs a permission error, or runs into an Application Not
Responding (ANR) notice, Monkey will stop sending events to the device or emulator. If you
really want to drive your device or emulator to the limit, you can override these default settings
and Monkey will continue to throw random events.

 Using Monkey can be as simple as the following line:

 adb shell monkey -p com.dutsonpa.debugexample -v 300

 Here, I have an emulator launched and accessible via adb . This means that adb is processed
first. The shell command is then passed to open a remote shell on the target device. Next
comes the call for monkey as well as an argument option of -p . The -p argument acts as
a constraint that will force Monkey to only work in the package that is specified immedi-
ately after it. The com.dutsonpa.debugexample is the package name that Monkey will be
constrained in. The argument of -v is used to show verbose logging to the terminal. You can

ptg16707593

22 Chapter 2 Testing and Debugging

omit the argument, but very little information will be shown when it is omitted. The 300 at the
end of the line is used as the number of events that should be used. In this case, 300 random
events will be sent to the emulator. The output of running a command with 100 events from
the terminal is shown in Figure 2.1 .

 Figure 2.1 With the verbose argument passed, the terminal displays information about the
events sent to the emulator.

 Monkey can also be somewhat tuned to act in a more controlled manner. By using different
arguments, you can control how fast the input events are triggered as well as how many of
them will be touch, motion, trackball, gesture, and other input events. Another wonderful
feature is that when an error does occur with the test, a full stack trace is printed to your termi-
nal, including application memory usage, the packages that were running at the time of the
crash, the type of crash, the exact point during the testing when the application crashed, and
thread traces.

 Using Monkey is a great way to get a quick evaluation on your application. It may seem like
sending random events is overkill, but in reality it gives you a way to evaluate the responsive-
ness of your application under heavy stress. When working with applications that need to do
rapid screen updates or even handle many input events at the same time (such as a game),
Monkey can generate random and mass input. Monkey also has the benefit of doing things
that may interrupt your application. By pulling down the status bar and pressing the back,

ptg16707593

23Integration Testing

home, and menu keys, Monkey gives your application a chance to work on the OnPause() ,
 OnResume() , and other methods.

 Monkey may not always be the solution that solves all of your problems, but it should be part
of your testing strategy because it is easy to run, comes with the Android SDK, and gives instant
feedback on how your device will handle your application.

 Another tool that you should consider using during your integration testing is user interface
(UI) testing. This can be done with another tool that is bundled with the Android SDK. The UI
Automator Viewer is run from the command line or terminal window from the Tools directory
of your SDK installation.

 Note

 If you installed Android Studio and do not know where the Android SDK has been installed on
your system, you can find out by opening Android Studio and then clicking the SDK Manager
icon, or by using the menu to select Tools, Android, SDK Manager. This will launch the SDK
Manager, which will list the path on your system to the SDK in a text field at the top of the
window.

 To start using the UI Automator Viewer, open your command shell and navigate to the tools
directory of your Android SDK installation location. Note that if the tools directory is in your
system path, you do not need to navigate to the directory; instead, you may simply run the
command to start using the UI Automator Viewer. Once you have located the proper path, run
the following:

 ./uiautomatorviewer

 Note that Windows users should not need the ./ and can just type in uiautomatorviewer to
start the application. When the application starts, you will be greeted with a fairly sparse inter-
face that is ready to be used.

 Before you go any further, make sure that you have connected an actual Android device to your
computer and that you have USB debugging enabled.

 Tip

 You can make sure that you have a device connected and ready to go either by checking the
Android DDMS window of Android Studio and looking for your device to be listed or by using the
 adb command to list devices attached to your computer. Typing adb devices into your com-
mand line should return a list of devices that are connected and ready to be debugged. If noth-
ing is returned, check your connections and make sure that you have USB debugging turned on
for your device.

 Once you have your device connected and the application that you want to test open, you can
click the Device Screenshot icon near the top of the UI Automator Viewer window. This starts
a process of taking a UI XML snapshot. This grabs the current screen and displays it on the left

ptg16707593

24 Chapter 2 Testing and Debugging

side of the window. Here, you can drag your mouse over various elements and inspect them.
As you mouse over various elements, a window on the right side will move through the layout
and show you where it belongs in the view hierarchy.

 When you click an element, layout, or widget, a red border appears and the details of that item
are displayed, including class, package, and property information. Figure 2.2 shows a button
selected with the property information being displayed inside of the UI Automator Viewer.

 Figure 2.2 On the left, the button being inspected has a border applied while various properties
of the button are displayed on the right.

 You may find that some items are not displayed on the screen but are present in your appli-
cation. For these items you can browse through the hierarchy and select the item. A dashed
border is applied to the item and the item properties are still listed below. Using this informa-
tion, you can determine if the item is where it should be, or it will give you a clue as to where
the item went when the application was loaded.

 Note

 One of the best features of the UI Automator Viewer is that you can see what will be shown,
displayed, or read to a user when the accessibility mode of the device has been enabled. If
you notice that “content-desc” has no value, you should address this immediately by adding
a proper value. Keep in mind, though, that not everything needs a value—for example, you
wouldn’t want the device to announce “scroll view” or “frame layout” to a user using your app.
You would, however, want buttons and navigation options announced.

ptg16707593

25Debugging

 Using the UI Automator Viewer can help you spot potential layout problems, find “missing”
components, widgets, and elements, and help you get a great view of how the layout is put
together when rendered on an Android device.

 Debugging

 Many developers devote a good portion of their time to writing unit tests and testing scripts in
order to ship applications that are stable, working, and run with near 100% certainty. At times,
especially with Android development, a test works on some devices but will behave differ-
ently on others. In this case, the best way to find the problem and fix it is with debugging.
Debugging on Android can be broken down into profiling, tracing, and messaging.

 Profiling

 When working with an application, it is good to know how much memory is available and
how much your application is using. Due to the flexibility that Android brings to the table,
many manufacturers have modified the general UI of Android, giving it special effects, new
applications, and extended functionality. However, this customization comes with a cost
attached. As manufacturers add on special features and “built-in” functionality, they change
the amount of system memory available and add or extend many of the built-in functions of
the device.

 More than just being aware of system memory, you should also be looking at the amount of
CPU that your application is using and how much is available. Something that many develop-
ers overlook is how many CPU cycles are being used by their application. This may not seem
like something to worry about, but using the device CPU is not free. Every task you perform
and process that you start uses power. The more power-hungry your application, the greater
chance your user has of not using and eventually uninstalling your application.

 To get started profiling your application, you need to either start your emulator or connect an
Android device to your computer with USB Debugging enabled.

 Tip

 To enable “Developer mode” on your Android device, open Settings, then find About Device
or About Phone, then tap Build Number until a toast (notification) appears telling you that you
are a developer. Note that some devices or phones may have a Software Information menu
option that contains the Build Number option. This will unlock the Developer Options, and you
can enable USB Debugging and many other options that will help you develop and debug your
applications.

 Once your device is connected, you are ready to start the Android Device Monitor. This can
be launched either from a command line or from Android Studio. To launch from a command
line, you need to navigate to the Tools directory of your Android SDK installation, or have that

ptg16707593

26 Chapter 2 Testing and Debugging

folder added to your system path. You then need to find and run monitor . Note that Linux
and similar systems will need to run ./monitor in order to start the application.

 If you want to start the Android Device Monitor from Android Studio, you can do so by click-
ing the Tools menu and then Android and Android Device Manager. Regardless of how you
start it, a splash screen will appear and then the Android Device Monitor window will appear.
 Figure 2.3 shows what the Android Device Monitor window looks like.

 Figure 2.3 The Android Device Monitor may look plain when getting started, but will show you a
wealth of information.

 Your device should be listed in the Android Device Monitor. Listed beneath it are any running
packages that can be profiled. By clicking one of these packages, you can start profiling the
package by clicking Update Heap; the icon should look like a cylinder that is partially colored
green. Before any information is shown, you will also need to click the trashcan icon for
garbage collection to run. You can then click the Head tab that is located on the right side of
the Android Device Monitor to view collected information. Figure 2.4 shows data that has been
collected from one of the packages running on my phone.

 By capturing a heap dump, I was able to see that my application was allocated a heap size of
just under 35MB and that I was using 27MB of it, leaving 7% free. As Figure 2.4 shows, all the
objects created by my application are listed and how much memory they take. This allows me
to quickly see what is using the most memory, and can give me a clue into what I should be
looking at to trim back any objects that may be inefficiently created.

ptg16707593

27Debugging

 It should be noted that depending on your application, the version of Android you are target-
ing, and the device you are using, you will see different results. This is one of the reasons why
it is best to test your applications on as many physical devices as possible so that you can see
real results.

 Another helpful stat is at the bottom of the Android Device Monitor window. It shows me the
amount of memory available on my device and where the current usage is. This can be helpful
in establishing a baseline of memory available on a device, and can be right-clicked to toggle
options for showing the max heap level.

 Another portion of the Android Device Monitor that you may find helpful while profiling is
the System Information tab. This window shows you the current CPU load, memory usage, and
frame render time of your device. Keep in mind that when polling the CPU and memory, it will
poll your entire device, not just a particular package.

 Now that you know how to get some basic profiling information, it is time to learn how to add
tracing to your code to help you analyze and optimize your code.

 Tracing

 For tracing what your code is doing, you can use a system-wide tracing utility called Systrace
that polls your device for running applications, memory usage, and more. When Systrace
completes, it generates an HTML report that can be viewed in a web browser. To launch

 Figure 2.4 Many areas of the Android Device Monitor can be resized, which allows you to view
information easier.

ptg16707593

28 Chapter 2 Testing and Debugging

Systrace, open the Android Device Monitor and click the icon that looks like green and red
bars. Figure 2.5 shows the icon highlighted in the Android Device Monitor as well as the option
window that appears when it is clicked.

 Figure 2.5 When the Systrace icon is clicked, a window appears, allowing you to set your
desired tracing options.

 The window that appears allows you to choose the following options:

■ Where to save the report

■ How long to run the trace

■ Size limit of the trace (in KB)

■ What application to trace (select “None” for all applications)

■ Specific tags to collect data on

 The Systrace tool is powerful, and reviewing the report it generates will give you a great insight
into what your application and device are doing. If you generate a report and find it difficult to
read, try turning on only the specific tags you need data for.

 Another method of debugging your code involves putting messages into a debug output when
the application is running.

ptg16707593

29Debugging

 Messaging

 It seems that every language has a way to print values to the console or into a debug log that
can be viewed as a program runs. For web developers, this used to mean using the alert()
method, and recently the console.log() method. For Java developers, this was occasionally
the System.out.println() method when not using a system of breakpoints and stepping
through with a debugger.

 In Android, you have access to the Log class, which in turn allows you to leave yourself
messages that can be viewed by LogCat. To use LogCat from the command line, you should
first connect a device or emulator and have it visible to adb . You can then type adb logcat ,
and information should start flowing into your console window. You can also pass some
options to the command-line call to control the output. Table 2.2 lists the options and what
they do.

 Table 2.2 The adb logcat Options

 -c Clears the log and exits.

 -d Dumps the log to the command line and then exits.

 -f <filename> Allows you to specify a file to save the output to.

 -g Displays information about the log buffer and then exits.

 -n <number> Sets how many rotated logs to keep. The default is 4 and requires the use
of the -r option.

 -r <kbytes> Sets the size value for a log before it is rotated.

 -s Filters the log to the silent level.

 -v <format> Sets the format used for log output. The default is "brief" . Other options
are "process" , "tag" , "raw" , "time" , "threadtime" , and "long" .

 LogCat is also integrated into Android Studio as part of the Dalvik Debug Monitor Server
(DDMS). It is visible through the Android tool window. If that window is not currently visible
inside of Android Studio, you can open it by clicking View, then Tool Windows, and then
Android.

 The LogCat window consists of an output area, a log level select box, a search input, and a filter
select box. Figure 2.6 shows an image of these areas.

 Because LogCat shows the system log, it can display lots of system information. This is good
because it allows you to see what is going on your device, but it can also make it difficult to
find a specific log message. This is what the search, filter, and log-level options are for.

ptg16707593

30 Chapter 2 Testing and Debugging

 By typing a query into the search field, you can filter by package or application name and
only messages that refer to that search query will be shown. By adjusting the log level, you can
restrict what is shown to only messages that are logged at that particular level. By using a filter,
you can view messages that are generated by the system, your application, or by a custom filter
that you can create.

 You can mix and match these options to help you narrow down and find the messages you
want quickly and efficiently. As mentioned before, you can use log levels to view only some
messages. These can be set in your application by using the Log class.

 To set log levels in your application, you need to import the Log class. This is done by includ-
ing import android.util.Log; in the import section of your class file. You can then start
logging messages in your code by using the following:

 Log.v("MainActivity", "This is a verbose log message.");

 Note that two arguments are passed to the Log.v() method. The first is a string that you
should set to the class you are currently in. This will help you identify where this particular
message was triggered from. If you do not wish to pass a string in this manner, you can declare
a variable in your class and use the variable instead. Doing so would look like the following:

 private static final String TAG = "MainActivity";

 Log.v(TAG, "This is a verbose log message.");

 There are several levels of logging. Table 2.3 shows the levels available that you can use in
your code.

 Table 2.3 Available Methods for Logging

 Log.v(String tag, String msg) Verbose

 Log.d(String tag, String msg) Debug

 Log.i(String tag, String msg) Info

 Figure 2.6 The output area (1) shows the log; the log level selector (2) allows fine tuning of the
log shown; the search area (3) allows you to filter based on a query; the Filters selector (4) allows
you to switch between viewing the global, custom, and application-specific logs.

ptg16707593

31Debugging

 Log.w(String tag, String msg) Warn

 Log.e(String tag, String msg) Error

 Log.wtf(String tag, String msg) Assert, What a Terrible Failure (WTF)

 Each of these levels is called in the same manner, with the differences being on when each
message appears when filtered in the logs. As an example, I have an application that has
buttons tied to trigger a log message when clicked. When I am filtering my LogCat console
with the Verbose level, the following is displayed:

 02-01 09:42:01.168 16414-16414/com.dutsonpa.debugexample V/MainActivity :
 Verbose button has been clicked.
 02-01 09:42:01.856 16414-16414/com.dutsonpa.debugexample D/MainActivity :
 Debug button has been clicked.
 02-01 09:42:02.665 16414-16414/com.dutsonpa.debugexample I/MainActivity :
 Info button has been clicked.
 02-01 09:42:03.471 16414-16414/com.dutsonpa.debugexample W/MainActivity :
 Warning button has been clicked.
 02-01 09:42:04.277 16414-16414/com.dutsonpa.debugexample E/MainActivity :
 Error button has been clicked.
 02-01 09:42:05.151 16414-16414/com.dutsonpa.debugexample A/MainActivity :
 WTF button has been clicked.

 The messages generated by the log contain a timestamp, the application that the message was
generated from, the level of log used (V, D, I, W, E, or A), with the tag that was used, and then
the message that was passed to be shown.

 Note that when using LogCat inside of DDMS, if I change my level to Warn, the LogCat
console only displays the following:

 02-01 09:42:03.471 16414-16414/com.dutsonpa.debugexample W/MainActivity :
 Warning button has been clicked.
 02-01 09:42:04.277 16414-16414/com.dutsonpa.debugexample E/MainActivity :
 Error button has been clicked.
 02-01 09:42:05.151 16414-16414/com.dutsonpa.debugexample A/MainActivity :
 WTF button has been clicked.

 This is because of the order of severity of these messages. Verbose will show all Verbose and
above log messages. Because Verbose is the bottom level of severity, all log messages will be
shown. When I changed the log level to Warn, only the Warn, Error, and WTF log messages
were shown.

ptg16707593

32 Chapter 2 Testing and Debugging

 Note

 The WTF tag is reserved for errors or sections of code that should never fail. It is also listed
as being an Assert, which is the highest level of logging. Code logged at the Assert level
will always be visible in LogCat because it has been signified as being of extreme or dire
importance.

 Logging files does not replace the benefits or merits of profiling, tracing, or even using break-
points. It does, however, give you, the developer, a way to see values and variables as they
change in real time without pausing threads and rummaging through a stack.

 Note that although they are very helpful while developing your app, they are not something
you will want to leave in the final build of your application. Leaving them in will cause more
memory usage, overhead, and potentially more file space to be used if any external logging
libraries are packed into your APK.

 Summary

 In this chapter, you learned about various methods and ways you can test and debug your
Android applications. You learned writing tests for your applications is important, and that
when collaborating with others, tests help you confirm that your code does what you believe
it will.

 You learned about the importance of automated testing tools to help you identify, control, fix
problems with rapid user input and layout problems. You also know that you have tools that
are built into the Android SDK that you can use from the command line to help you achieve
testing success.

 You learned how to monitor your Android device or emulator for memory and CPU usage, and
how to create reports to understand what is using your system resources so that you can opti-
mize your code. You also learned that not every manufacturer ships the same Android experi-
ence, which gives you the opportunity to either extend new functionality or to be aware that it
is there when you are writing your own application.

 Lastly, you learned about the logging process and how you can log messages to the console and
view them either with the command-line logcat tool or by using the Android tool window in
Android Studio and adjusting the LogCat output filters.

ptg16707593

 3
 Application Structure

 With the decision to change the supported development platform from the ADT bundle to
Android Studio also came the decision to start using Gradle as the build system. This opened
the door for many developers to start assembling Android applications in a more collaborative
way and changed the file structure with which prior projects were built.

 In this chapter, you learn the new file system structure as well as the types of files you can
include in your project, including where XML files are located, where image assets are stored,
and where the Gradle build files are stored.

 When you create an application in Android Studio, you find that the project is divided into an
App folder and Gradle scripts. Figure 3.1 shows this structure.

 Figure 3.1 The App folder and the Grade Scripts section are visible in the Project window.

ptg16707593

34 Chapter 3 Application Structure

 The App folder contains three subfolders that house the files and resources that make up your
application. They are divided so that it should be fairly easy to determine which assets go in
which folder; however, those new to application development or those looking to migrate from
the older Eclipse-based development model might not be certain where files should go. To
make this easier, I walk you through each folder and what it contains.

 Manifests

 The manifests folder lives up to its name. This is where you would put your manifest files.
Depending on your target, you may have only one manifest file, or you may have several. You
may have several manifest files due to application versioning, or even for supporting specific
hardware.

 A manifest file is generated by Android Studio when you create a project. Listing 3.1 shows a
generated manifest file.

 Listing 3.1 Contents of a Generated Manifest File from Android Studio

 <?xml version="1.0" encoding="utf-8"?>
 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.dutsonpa.helloandroid" >

 <application
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >
<activity
android:name=".MainActivity"
android:label="@string/app_name" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

 </application>

 </manifest>

 If you have worked with an Android manifest file before, this file should look familiar. It is
an XML file and as such begins with a declaration of <?xml version="1.0" encoding=
"utf-8"?> . This is done so that the application knows how to handle the information
contained within the file. Because it has been declared as an XML file, you will find that
options and settings inside this file consist of elements that may contain attributes. The next
element after the declaration is a prime example.

ptg16707593

35Manifests

 The <manifest> element contains some attributes: the XML namespace for Android and the
package name for your application. The package name is the one you created when you started
the project. The <manifest> element can also contain child elements.

 In Listing 3.1 , there is only one child element: the <application> element. This contains
more attributes that will affect how your application is displayed as well as if the user is allowed
to have the application be backed up. Other child elements may include any Activities, Intents,
Providers, Receivers, Services, and so on, that the application will need to use.

 Your manifest may also contain other elements, such as the <uses-permission> element. This
element is both the bane and balm of the application developer. By allowing your application
some access to system functionality, you can create applications that appear to be pure magic,
giving users access to everything they want when they want it. This unfortunately can also
cause some very scary messages to be displayed to the user when they install your application.
A user is much more likely to install your application if you ask for only what you absolutely
need in order to accomplish a task rather than requesting the keys to the kingdom and promis-
ing that you won’t compromise the user or their personal data.

 Note

 You may have previously used <compatible-screens> elements to target specific screen
sizes for your application. This is no longer an encouraged method of creating applications.
Instead, you should use different layout resources to allow as many users as possible to enjoy
and use your application.

 Due to the nature of XML, the order in which you add or remove elements does not matter as
much as the child-parent relationship. However, note that the official documentation lists that
the following elements be ordered as shown in the following pseudo-code:

 <manifest>
 <uses-permission />
 <permission />
 <permission-tree />
 <permission-group />
 <instrumentation />
 <uses-sdk />
 <uses-configuration />
 <uses-feature />
 <supports-screens />
 <compatible-screens />
 <supports-gl-texture />
 <application>
 <activity>

<intent-filter>
<action />

ptg16707593

36 Chapter 3 Application Structure

<category />
<data />

</intent-filter>
<meta-data />

 </activity>
 <activity-alias>

<intent-filter></intent-filter>
<meta-data />

 </activity-alias>
 <service>

<intent-filter></intent-filter>
<meta-data/>

 </service>
 <receiver>

<intent-filter></intent-filter>
<meta-data />

 </receiver>
 <provider>

<grant-uri-permission />
<meta-data />
<path-permission />

 </provider>
 <uses-library />
 </application>
 </manifest>

 You may be tempted to invent and add your own elements; however, you should know that
the manifest is parsed for a specific set of elements and when custom elements are found it will
cause an error. This is also true when using custom attributes inside of elements.

 Java

 The java folder is self-explanatory. This is the folder in your project where you will be storing
all of the Java files you use to create and work with your application.

 All of your classes will be available here, and Android Studio will even bundle together the
package path so that you can work with the files without having to drill down through the
folders that make up your package.

 You are not limited to keeping your classes inside of the package root. Just like when working
with other Java applications, you are free to create subdirectories that make sense and place
your classes inside of them.

 For example, if you were working with database connections and wanted all of your data
classes to reside in an easy-to-use storage location, you could create a “data” folder and place
your classes inside.

ptg16707593

37Res (Resources)

 Depending on how you are creating your application, you may be able to import your classes
for use inside of your MainActivity . If I had created a class for database work named MyDB
and placed it in the “data” folder, I would use the following import to use it inside of my
 MainActivity :

 import com.dutsonpa.HelloAndroid.data.MyDB;

 When working with your own project, you need to change the domain (dutsonpa) and appli-
cation name (HelloAndroid) to match.

 Res (Resources)

 The manifest and java folders have so far held the essential portions of the application that
allow it to be installed and the logical portion of your application. The “res” folder switches
things up a little bit by controlling the layout, media, and constants that will be used in your
application. The folder is thus named due to it containing all of the resources that your app
relies on. It contains folders that help you separate and sort the resources of your application.

 When you use Android Studio to create a new application, some folders will be automatically
generated for you. However, these folders are not the only ones you can use in your project.
The following are the folders that can be used inside of the res folder.

 Drawable

 The drawable folder contains all the visual media and resources that your application will need
to use. Table 3.1 shows drawable types that you can place and use inside of this folder.

 Table 3.1 Resource Files for Drawable Folder

 Drawable Resource File Type

 Bitmap Images files (such as .jpg, .png, and .gif).

 Clip Drawable An XML file consisting of points that is used in conjunction with
another drawable to create a clipped object.

 Insert Drawable An XML file that is used to place one drawable inside the bounds of
another drawable.

 Layer List An XML file that contains an array made up of other drawables. Note
that items will be drawn in order based on location in the array placing
item [0] on the bottom layer.

 Level List An XML file that is used to display other drawables that can be
accessed based on the level requested through setImageLevel() .

 Nine-Patch A PNG image file that can stretch specific portions to scale based on
content size.

ptg16707593

38 Chapter 3 Application Structure

 Drawable Resource File Type

 Scale Drawable An XML file that contains a drawable that changes the dimension
value of another drawable based on its current value.

 Shape Drawable An XML file that contains the values of geometric shape, color, size,
and similar attributes.

 State List An XML file that is used for images that have multiple or different
states of appearance.

 Transition Drawable An XML file that contains a drawable that can be transitioned between
two items.

 When working with Android Studio, be aware that not all folders may be shown for your
resources. On your file system, you may have separate drawable, drawable-hdpi, drawable-mdpi,
and drawable-xhdpi folders, with each containing a resource that is named the same but that
is to be used specifically for a different display density. In Android Studio this resource will be
shown in the drawable folder as a folder that can be expanded, with the resource it will be used
with in parentheses. Figure 3.2 shows how Android Studio displays resources with the same
name in folders that are pixel density dependent.

 Figure 3.2 The ic_launcher.png file is several folders, but is displayed as a single resource
with density-specific versions shown when the main resource is expanded.

ptg16707593

39Res (Resources)

 Layout

 The layout folder houses the XML files used for your layouts. The default layout file is named
after your Activity, which if you created a new project in Android Studio and selected the
default settings would be activity_main.xml .

 This file is used to set up the layout for your Activity and is used for basic alignment of your
layouts, components, widgets, and similar assets that are used for the UI of your application.

 Similar to the drawables folder, you may have multiple layout folders to handle different
devices. This can be helpful when working with layouts that need to be adjusted for devices
with more or less screen space available. Developers who are used to working with Fragments to
change the layout of the page will be pleased that they can now use a separate layout file that
will automatically be used rather than having to work with a Fragment.

 To use a separate layout based on screen size, you need to specify the layout based on the dp
unit width or height of the device and place it as the filename. The dp unit stands for density
independent pixel. This unit allows you to use relative measurements that will not be off when
used on devices with different physical pixel resolutions. For example, tablets that are 7" and
larger will generally have a width of 600dp units; this allows you to create a folder named
layout-sw600dp and place your layout XML file there. When the application is opened, it will
check to see which layout should be used and display the layout appropriate for the device.

 Layouts can also be supported based on screen density based on dots-per-inch (dpi) by using
folders that are named based on the density, as listed:

■ ldpi : Used with screens that have ~120dpi.

■ mdpi : Used with screens that have ~160dpi.

■ hdpi : Used with screens that have ~240dpi.

■ xhdpi : Used with screens that have 320dpi.

■ xxhdpi : Used with screens that have ~480dpi.

■ xxxhdpi : Used with screens that have ~640dpi.

■ nodpi : Resources here will be used on all densities.

■ tvdpi : Used on screens sized between mdpi and hdpi, approximately 213dpi.

 Menu

 If you opted to create or add a menu to your application, the XML that defines your menu
resides in this folder. You have the option of creating whatever name you would like for your
menu, but if you created a new project in Android Studio and used the default options, you
will find that your menu have been named menu_main.xml .

 This naming convention is actually quite helpful because it identifies what the XML file is for
“menu” and what activity is assigned to “main.”

ptg16707593

40 Chapter 3 Application Structure

 Values

 The values folder is used to keep track of the values you will be using in your application. To
create applications with an easier maintenance cycle, it is highly recommended to no longer
hard-code values into your code. Instead, place values in XML files inside of the values folder.

 Here’s an example of this:

 // Hard-coding a resource
 <TextView
 android:text="Hello Android!"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

 // Using a value from /res/values/strings.xml
 <TextView
 android:text="@string/hello_android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

 In the previous example, the value shown in the TextView would change based on the string
entered into strings.xml . The following is an example of a strings.xml file:

 <?xml version="1.0" encoding="utf-8"?>
 <resources>
 <string name="hello_android">Hello Android!</string>
 </resources>

 When you create a new project with Android Studio, the following XML files will be generated
automatically:

■ dimens.xml

■ stings.xml

■ styles.xml

 By looking at these files, you’ll notice that each of them is an XML file with a parent element
of <resources> . This may lead you to think that you could put all of your values in one XML
file and use it inside your application. Although this is something you can do, for the sake of
maintaining your application and knowing exactly where your data is, it is strongly recom-
mended that you break your values into multiple files. The following list of files may be used in
your application to help keep different values separated:

■ arrays.xml

■ colors.xml

■ dimens.xml

■ strings.xml

■ styles.xml

ptg16707593

41Gradle

 Each file is clearly named so that you know exactly what you are dealing with. Also, each file is
named after the element that would be placed in a parent <resource> element. For example,
color values would reside in a <color> element that is a child of the <resource> element.

 Other Resources

 You can create other folders for other resources in your application. Table 3.2 lists each folder
name as well as what should be stored in that folder.

 Table 3.2 Application Resource Folders

 Folder Name Folder Contents

 animator XML files for property animations

 anim XML files for tween animations

 color XML files for color state lists

 raw Stores files that will be read with an AssetManager

 xml Any XML files that you will be using in your application with the
 Resources.getXML() method

 Tip

 You may be wondering where to place audio files that your application uses. You can store
them in /res/raw and access them with R.raw.audio_file . This eliminates the need for
any other project-level folders and keeps your res folder organized.

 Gradle

 With Android Studio, the decision was made to leave ant for project building and move to
Gradle. To help you manage your build files, Android Studio adds a section named Gradle
Scripts to your project. When expanded, Gradle Scripts will show you your build configuration
file, properties, and setting files.

 When you are migrating a project created with Android Studio, you may find that you need to
adjust some of these settings to match newer versions of Gradle or of the build tools used. You
can see the current settings by viewing the build.gradle file in your app folder. Listing 3.2
shows a sample build file.

ptg16707593

42 Chapter 3 Application Structure

 Listing 3.2 A build.gradle File for an Android Application

 apply plugin: 'com.android.application'

 android {
 compileSdkVersion 21
 buildToolsVersion "21.1.2"

 defaultConfig {
 applicationId "com.dutsonpa.helloandroid"
 minSdkVersion 15
 targetSdkVersion 21
 versionCode 1
 versionName "1.0"
 }
 buildTypes {
 release {

minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android.txt'),
'proguard-rules.pro'

 }
 }
 }

 dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 compile 'com.android.support:appcompat-v7:21.0.3'
 }

 When you’re migrating or upgrading your application, the lines you need to pay the most
attention to are the compileSdkVersion , buildToolsVersion , minSdkVersion , and
 targetSdkVersion . If these numbers do not match what you have installed on your system,
you will see compilation errors and your application will fail to launch on an emulator or
device, or even compile.

 The other Gradle files should be managed by Android Studio and will be updated as need when
your project is built and compiled. If you want to learn more about Gradle, visit the official
website: https://gradle.org/ .

 Summary

 In this chapter, you learned about the components that make up an Android application. You
learned that with the change from Eclipse with the ADT plugin to Android Studio as the devel-
opment IDE, the project structure and application assets are stored in different locations.

https://gradle.org/

ptg16707593

43Summary

 You learned about the application manifest and the various elements that can be included,
such as the security elements that allow your application to access system resources to further
extend the functionality of your application.

 You also learned that you can use folders that contain assets for specific devices based on the
device screen density. This allows you to create specific layouts for multiple devices without
having to resort to using Fragments for layout changes.

 Finally, you learned that Android Studio uses the Gradle build system and that some problems
can be avoided by making sure that it has been configured for your environment.

ptg16707593

This page intentionally left blank

ptg16707593

 4
 Components

 When you’re developing an Android application, having an understanding of the components
that make up the application will accelerate the development as well as simplify the process.
Knowing how pieces of the architecture work with each other can turn creating an impossible
application into an attainable one.

 In this chapter, you are introduced to the components that are used by the Android system to
pass information and display data to the user. Specifically, you learn about Intents, Activities,
and Fragments.

 Intents

 When it comes to application components, the Intent component is one that is aptly named.
You use an Intent to inform the system that you want to start something. You can think of it
exactly as it sounds: letting the system know what your intent is.

 When using an Intent, you can send two types: an explicit Intent and an implicit Intent. These
mostly differ in how you would like the Intent to be interpreted.

 An explicit Intent requires that you specify the component you want by using a fully qualified
class name. For example, you can use an Intent that calls com.mycompany.MyActivity . This
allows specific Activities or services to be called. There are times, however, when you will want
other applications to be able to listen to and process your Intent. This is when you would use
an implicit Intent.

 Note

 To keep your application secure, always make sure you are using an explicit Intent. You should
also avoid setting up Intent filters that expose your services. This is crucial because any explicit
Intents will be processed regardless of any Intent filters you have in place for your application.
If another developer were to decompile your code, they would see your services and may end
up using them for their own nefarious purposes. To help protect you from making this mistake,
Android 5.0+ throws an exception whenever there’s an attempt to use bindService() with an
implicit Intent. This serves as a reminder to use an explicit Intent.

ptg16707593

46 Chapter 4 Components

 If you create an application that processes photos, shares data, or even allows a form of text
messaging, you may want to allow the user to decide how this is handled. For the example of
processing photos, you can use an implicit Intent to tell the Android system that you would
like to use the camera on the device. This would then fire up the basic needs of previewing
an image, taking it, and saving it to memory. The image would then be passed back to your
application, where you would do your processing and saving. For sharing data or messages, you
may want to use an implicit Intent to allow the user to choose from a list of applications they
already have installed to complete the sharing process.

 Allowing users to choose to use their own applications is potentially a great idea because it may
save you in having to develop code that handles connecting to third-party APIs, dealing with
developer agreements, and compatibility issues, but allows users to use applications that they
are already familiar with and efficient at using. You need to keep in mind, however, that the
user may not have any applications installed that will respond to the Intent you are attempting
to use. Because it is always wise to have a contingency plan, you should always perform a check
to see if the system has an application registered to read your Intent.

 To build your Intent, you need to name it, instantiate it, and, then, if making it explicit, give
the Intent the information required for the service or Activity to start. The following shows the
creation of an explicit Intent:

 Intent serviceIntent = new Intent(this, MyApplication.class);

 To create an implicit Intent, you can leave out the specific call to the qualified domain class:

 Intent shareIntent = new Intent();

 Whenever you use an implicit Intent, check with the system to make sure there is an applica-
tion that can handle your request. This can be done as follows:

 if (shareIntent.resolveActivity(getPackageManager()) != null) {
 startActivity(shareIntent);
 }

 Intent Filters

 Intent filters are created by adding an <intent-filter> element to your application manifest
file. You must include <action> , <data> , and <category> elements as child elements in the
 <intent-filter> .

 The following is a sample Activity that would be included inside of your application manifest
XML:

 <activity android:name="SharingActivity">
 <intent-filter>
 <action android:name="android.intent.action.SEND"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <data android:mimetype="text/plain"/>
 </intent-filter>
 </activity>

ptg16707593

47Intents

 By declaring the Intent filter, you are allowing your application (and in turn your Activities or
services) to be available to other applications. It is recommended that you do not use Intent
filters for calls from your own application; as mentioned previously, this will expose your
services and may be a security concern for your application.

 Broadcast Receivers

 When an Intent is created and sent, your application needs a way to retrieve it. This is done by
creating a broadcast receiver. This is a two-part process: You first create a BroadcastReceiver
in a class file and then register the class file inside of your manifest XML with a <receiver>
that contains a child <intent-filter> element.

 The following demonstrates a Java class that listens for an Intent and displays a toast message
when invoked:

 public class MyBroadcastReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 Toast.makeText(context, "Broadcast Received!", Toast.LENGTH_SHORT).show();
 }
 }

 To complete the broadcast receiver, the following demonstrates a <receiver> element that is
a child element inside of the <application> element in the manifest XML that invokes the
 onReceive() method:

 <receiver android:name=".MyBroadcastReceiver">
 <intent-filter>
 <action android:name="com.dutsonpa.helloandroid.MyBroadcastReceiver" />
 </intent-filter>
 </receiver>

 Note that in the <action> element, the name is set to the value that is set when the Intent is
created. If it is not added when initialized, the name can be set with the setAction() method
that is used on the Intent object.

 Broadcast receivers can also be created and destroyed dynamically, as needed, during
your application lifecycle. This can be done by using registerReceiver() and
unregisterReceiver() . By using these methods, you can make services or activities
available only when you need them. Another place you may want to use them is during
the onResume() and onPause() methods of your application. The following demonstrates
using registerReceiver() in the onResume() method and unregisterReceiver() in the
 onPause() method:

 @Override
 protected void onResume() {
 super.onResume();
 registerReceiver(new MyBroadcastReceiver(),

ptg16707593

48 Chapter 4 Components

new IntentFilter(com.dutsonpa.helloandroid.MyBroadcastReceiver));
 }

 @Override
 protected void onPause() {
 super.onPause();
 unregisterReceiver(MyBroadcastReceiver);
 }

 Choosing between creating broadcast receivers when needed versus adding them to your mani-
fest XML may come down to your personal preference; however, when starting out it may be
more beneficial to add any broadcast receivers to your manifest first so that you have a list of
the ones you are using in your application. The system Intents you plan on accessing will also
be a factor when choosing to use dynamic versus static broadcast receivers.

 Another component that is heavily used in the creation of Android applications is an Activity.

 Activities

 An Activity can be simply described as one of the screens of your application. The main screen
of your application would be one Activity and an options screen would be another Activity.
Each Activity is essentially a combination of a layout, widgets, and application components
that run when active.

 An application can consist of multiple Activities, but can only have one Activity in focus at a
time. When an Activity is running and a new Activity is called, the Activity that was running is
stopped and placed into the back stack. If a third Activity is called, then the second Activity is
also placed into the back stack on top of the first Activity. Activities are stacked this way so that
when a user presses the “back” button on their device, the application knows which Activity to
display.

 Creating an Activity

 Creating an Activity is a two-step process: You create a subclass of Activity and then add
the Activity to your application manifest. Creating a subclass is generally done by extending
 Activity or ActionBarActivity . This can be done as follows in your Activity class file:

 public class MainActivity extends Activity {
 // Overrides, variables, callbacks, and methods go here
 }

 If your application uses an action bar, you will want to change the class to extend
 ActionBarActivity , like so:

 public class MainActivity extends ActionBarActivity {
 // Overrides, variables, callbacks, and methods go here
 }

ptg16707593

49Activities

 The second step to making your Activity work in your application is to add your Activity to the
application manifest. To achieve this, you need to add an <activity> element as a child to
the <application> element. If you are adding a new Activity to a project that already has an
Activity, you may only need to add an element that specifies the name of your new Activity. In
the following example, an Activity named OptionsActivity was created and has been added
to the manifest:

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name" >
 <intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>
 </activity>
 <activity android:name=".OptionsActivity"/>
 </application>

 The original Activity, named MainActivity , is listed first and has additional options, such as
an Intent filter added to it. You can see from the example that if your Activity does not use any
Intent filters, it doesn’t need to list them in the application manifest.

 I briefly mentioned that Activities follow a lifecycle. This lifecycle helps keep the entire Android
system running smoothly and also helps you, as a developer, to ready, write, and maintain data
integrity while providing the user the experience they expect.

 Activity Lifecycle

 The Activity lifecycle is the process that all Activities use in order to be called, run logic, and
finish in a structured and reliable manner. This helps the system maintain stability and manage
system resources. Some methods, such as finish() , can be called in your Activity to force the
Activity to close; however, it is recommended that you allow the Android system to manage
when to finish or destroy an Activity.

 Every stage of the Activity lifecycle has callback methods that do not all need to be imple-
mented inside of your Activity logic. With that said, the onCreate() callback method is
required, and the onPause() method should also be implemented so that you can save data or
perform last-minute operations before the Activity is destroyed.

 To help you visualize how the Activity lifecycle process works, Figure 4.1 shows the Activity
lifecycle.

ptg16707593

50 Chapter 4 Components

OnDestroy()

OnResume()

OnPause()

onRestart()

OnCreate()

OnStart()

Process
Terminated

Other Apps
Need Memory

User Navigates
to Activity

OnStop()

Figure 4.1 When an Activity starts, it follows the cycle demonstrated in this diagram. You can
override these methods to perform logic in the various states an Activity cycles through.

 Listing 4.1 shows the logic from an Activity that contains the usable Activity lifecycle callback
methods along with comments on what each callback does.

 Listing 4.1 Activity Callback Methods

 public class MainActivity extends ActionBarActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 /* This activity is called whenever the application is started

* any variables you need as well as static assets should be
* created in this method
*/
setContentView(R.layout.activity_main);

 }
 @Override
 protected void onStart() {

ptg16707593

51Activities

 super.onStart();
 // This method runs either before onStop() or onResume()
 }
 @Override
 protected void onResume() {
 super.onResume();
 // This method happens right before the activity is officially running
 }
 @Override
 protected void onPause() {
 super.onPause();
 /* This method runs when the application is about to be terminated for

* memory, or when the activity is changed or interrupted by another
* activity such as a phone call. This is the method to use to save
* data and changes
*/

 }
 @Override
 protected void onStop() {
 super.onStop();
 // This method runs when the activity is stopped but not yet destroyed
 }
 @Override
 protected void onDestroy() {
 super.onDestroy();
 // Last call before the activity and any data it has will be destroyed
 }
 }

 It is important to note from Listing 4.1 that each callback method uses a super method to
extend the implementation. Failing to use the super method results in an error and causes
your application to fail when it is compiled. As documented in each method in the listing, each
callback has a different purpose and allows you to perform different actions.

 Tip

 Although it may be tempting to do your final save or processing of data in the onDestroy()
method, this is not a suitable method for doing final work. Depending on the resources needed
by the system, this method may be executed and finished before your operations and will
leave your application in a broken state. Stick to getting your data-saving work done in the
 onPause() callback.

 Another component that extends the functionality of an Activity is a Fragment.

ptg16707593

52 Chapter 4 Components

 Fragments

 When the first Android tablets started to appear on the market with Android 3.0 (Honeycomb),
developers were given their first glance at how Fragments can be used to change the layout and
structure of an application. Users were finally given devices that had displays large enough to
allow more than a single-line list item or line of text to be shown. Email apps could now have a
list of emails on one-third of the screen with a large preview window taking up the other two-
thirds. The most amazing part was that the same application could be run on a smaller device,
with the list taking up the full screen and the preview being shown when tapped.

 When working with Fragments, you will get the greatest benefit by thinking of your Activities
as reusable modules. This allows you to focus on creating complete Fragments that don’t
require or rely on the functionality of other Fragments in order to work. This also has the
added benefit of making sure that each Fragment will behave as expected on a device that only
supports viewing one Fragment at a time.

 Creating a Fragment

 Creating a Fragment is similar to creating an Activity, although there are a couple of subtle
differences. You first need to create a subclass that extends the Fragment class. Note that you
do not need to create separate class files. If you have an Activity that uses a Fragment, you can
place the Fragment code within the same class file You will then need to implement at least a
couple of the Fragment lifecycle methods. Finally, if you want your Fragment to have a UI, you
will need to return a View .

 As with Activities, Fragments have a lifecycle with callback methods. The following lists the
methods that can be included in your Fragment:

■ onAttach() : The first stage of Fragment initialization.

■ onCreate() : When the Fragment is created, the logic here will be processed.

■ onCreateView() : When the Activity that the Fragment has been included in returns
from the Activity stack, the logic here is run as part of the resuming process.

■ onActivityCreated() : The Activity the Fragment is in has been fully created or
resumed.

■ onStart() : Called when the Fragment has been started.

■ onResume() : This will run when the Fragment resumes, and is the last point for logic
changed before the Fragment is considered active.

■ onPause() : As the Fragment is placed into the back stack, the logic here is processed.

■ onStop() : The Fragment is going to be destroyed soon, so the logic can be run here.

■ onDestroyView() : The current view is going to either load the Fragment back to the
Activity cycle through onCreateView() or be destroyed.

ptg16707593

53Fragments

■ onDestroy() : The Fragment is going to be destroyed; this is the last chance for the logic
to be run before the Fragment is destroyed and detached from the view.

■ onDetach() : As the Fragment is removed, this is the last method you can work with as
part of the Fragment-destroy process.

 Fragments also contain a lifecycle. Figure 4.2 shows how the fragment lifecycle works.

OnDestroyView()

OnDestroy()

OnDetach()

OnResume()

OnPause()

OnActivityCreated()

OnCreateView()

OnCreate()

OnAttach()

OnStart()

OnStop()

Figure 4.2 Fragments have a lifecycle as well as methods that can be overridden, similar to
Activities. However, the flow differs in Fragments moving to the bottom or top of the stack.

ptg16707593

54 Chapter 4 Components

 As when working with Activities, you are not required to use all of the lifecycle callbacks, but it
is encouraged that you include at least one of the create and onPause() methods. The follow-
ing shows a sample Fragment class:

 public class PlaceholderFragment extends Fragment {

 public PlaceholderFragment() {
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View rootView = inflater.inflate(R.layout.fragment_main, container, false);
 return rootView;
 }

 @Override
 public void onPause() {
 super.onPause();
 // logic should go here for handling the fragment data
 }
 }

 Inside of the onCreateView() method, a LayoutInflater is used along with a ViewGroup .
This is done to add the UI from the Fragment to the final layout. This happens when return
rootView executes, as the layout requires a View to be returned in order to properly add the
Fragment as part of the layout.

 The onPause() method has been included to show the similarity between the Fragment and
Activity logic. Just as you should be putting any saving logic inside of the onPause() callback
method in an Activity, you should do the same with your Fragment. This way, the logic
will have time and be certain to finish rather then relying on the onDestroyView() or
onDestroy() callback method.

 After you create your Fragment, you need to add the Fragment to the Activity layout XML
file. Depending on your chosen layout and Fragment implementation, this can be as simple
as adding a <fragment> element with the properties you want set inside of your layout. The
following is an example of the layout XML with two Fragments:

 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <fragment android:name="com.cookbook.fragments.ItemFragment"
 android:id="@+id/item_fragment"
 android:layout_weight="1"
 android:layout_width="0dp"
 android:layout_height="match_parent" />

ptg16707593

55Fragments

 <fragment android:name="com.cookbook.fragments.TextFragment"
 android:id="@+id/text_fragment"
 android:layout_weight="2"
 android:layout_width="0dp"
 android:layout_height="match_parent" />

 </LinearLayout>

 Communicating with Fragments

 Even though Fragments should be created and treated as individual modules, they will prob-
ably need to pass data to the Activity that is loading the Fragment. Fragments can access
objects in the Activity by using the getActivity() method. Views can be accessed by chain-
ing the findViewById() method to the getActivity() method. For example, a ListView
that exists in the Activity could be accessed from the Fragment with the following code inside
the Fragment:

 View listView = getActivity().findViewById(R.id.list);

 If you need to pass data from a Fragment to an Activity, you will need to create a callback
method via a public interface inside your Fragment. After you create the interface, you can
extend your Activity to include it.

 The following shows a sample public interface from inside of a Fragment class:

 public interface OnItemSelectedListener {
 public void onItemSelected(int position);
 }

 Now that the interface has been created, it can be added to an Activity and then accessed by
instantiating it. The following shows sample code from an Activity that adds the interface and
sets up an object to use it:

 public class MainActivity extends FragmentActivity
 implements ItemFragment.OnItemSelectedListener {

 //...
 ItemFragment firstFragment = new ItemFragment();
 //...

 @Override
 public void onAttach(Activity activity) {
 super.onAttach(activity);
 try {

mListener = (OnItemSelectedListener) activity;
 } catch (ClassCastException e) {

ptg16707593

56 Chapter 4 Components

throw new ClassCastException(activity.toString() + " must implement
OnItemSelectedListener");
 }
 }

 }

 Note that in the previous code, the ItemFragment should be called from inside of an Activity
lifecycle callback method such as onCreate() . It should also be noted that the onAttach()
callback method has been added. In the onAttach() method, a try/catch statement is used to
help detect whether the interface has been implemented. Because this pseudo-code example is
short, it would be fairly easy to spot if the interface has not been implemented. In your code,
however, there may be hundreds of lines of code and you may not be sure if you have imple-
mented the interface. The try/catch will come in handy because you will get an exception that
tells you which Activity and which interface it is that was missed. If the interface was properly
implemented, the mListener is defined so that it can be used to pass events from the Fragment
to the Activity.

 Another way to load data into either a Fragment or an Activity is to use a Loader.

 Loaders

 The Loader is a wonderful component that can be used on both Activities and Fragments. A
Loader has the ability to asynchronously collect data and deliver it. It also has the ability to
monitor for changes, which makes it great to use in Fragments because it can poll for a change.

 Because many Loaders may be used, a LoaderManager is used to manage the ones in your
Activity or Fragment. This is most easily accomplished by using getLoaderManager() and
then using initLoader() to make sure that the Loader has been created, and if it has previ-
ously been created, to reuse it. In order to determine whether the Loader has been created, an
ID is passed to the initLoader() method. The following line shows these methods in use:

 getLoaderManager().initLoader(0, null, this);

 Here, 0 is the ID of the loader, the null value is passed in lieu of additional arguments,
and this is used because the third argument of initLoader() needs a
 LoaderManager.LoaderCallbacks implementation.

 There may be occasions when you reuse the Loader but want to discard the data that was previ-
ously used with it. This can be accomplished by using restartLoader() in one of your state-
change methods. This would appear as follows:

 getLoaderManager().restartLoader(0, null, this);

 Implementation of LoaderCallbacks is generally done with a Cursor . The following is an
example of implementing on a Fragment class:

 public class MyFragment extends Fragment
 implements LoaderCallbacks<Cursor> {

ptg16707593

57Fragments

 // fragment class code
 }

 To manage connections, data, and cleanup, you need to implement three methods that are part
of LoaderCallbacks : onCreateLoader() , onLoadFinished() , and onLoaderReset() . When
 initLoader() is called, onCreateLoader() is called automatically. Because the previous
example used a CursorLoader , the following demonstrates how the onCreateLoader() is
used with a CursorLoader :

 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 CursorLoader loader = new CursorLoader(
 this.getActivity(),
 CONTENT_URI,
 projection,
 selection,
 selectionArgs,
 sortOrder);
 return loader;
 }

 In the previous example, the CursorLoader object is created, populated, and then returned.
Some developers find it easier to instead create the variables separately and then return and
declare the new object at the same time. This is programmer preference, and you should follow
the method that fits your coding standard and style.

 The onLoadFinished() method is called when a load is finished. It is guaranteed to execute
and is a good place to do data management. However, you should not close the cursor here
because the Loader will handle that by itself. The following is an example of swapping data
without closing the cursor:

 SimpleCursorAdapter myAdapter;

 public void onLoadFinished(Loader<Cursor> loader, Cursor data) {
 myAdapter.swapCursor(data);
 }

 The onLoaderReset() callback method is used when a previously created Loader is reset rather
than being reused. Using this method is fairly straightforward because it relies on only having
access to the adapter being used to hold data, and then calling the swapCursor() method on it
and passing a null value. The following shows an example of a SimpleCursorAdapter being
reset:

 SimpleCursorAdapter myAdapter;

 public void onLoaderReset(Loader<Cursor> loader) {
 myAdapter.swapCursor(null);
 }

ptg16707593

58 Chapter 4 Components

 Summary

 In this chapter, you learned about Intents and how they are used to start various processes
and communicate with the Android system. You learned that there are implicit and explicit
forms of Intents and that each has a benefit to being used. You learned that Intent filters
allow your application to answer Intent calls from other applications. This is especially helpful
when allowing the user to use functionality that they may be used to using inside of another
application.

 You also learned about Activities and how each Activity can be thought of as a display screen
inside of your application. You learned that Activities are created by using Java and by adding
them to your application manifest XML. You also learned that Activities have a lifecycle that is
used to manage how they are interacted with and that this lifecycle can be accessed via callback
methods. These methods allow you to make sure that data integrity is maintained and that
users have a seamless experience.

 You then learned about Fragments and how they are used to create applications that take full
advantage of available screen space by combining what would otherwise be Activities into a
shared Activity. You also learned that, like Activities, Fragments follow a lifecycle with callback
methods that you can use. You also learned that Fragments can communicate with each other
and pass events back and forth.

 Finally, you learned about Loaders and the role they play in asynchronously getting data that
can be used in either Activities or Fragments. You learned how they are created, reused, and
even reset.

ptg16707593

 5
 Views

 Of all the pieces of the Android system, views are probably the most used. Views are the core
building block on which almost every piece of the UI is built. They are versatile and, as such,
are used as the foundation for widgets. In this chapter, you learn how to use and how to create
your own view.

 The View Class

 A view is a rather generic term for just about anything that is used in the UI and that has a
specific task. Adding something as simple as a button is adding a view. Some widgets, including
 Button , TextView , and EditText widgets, are all different views.

 Looking at the following line of code, it should stand out that a button is a view:

 Button btnSend = (Button) findViewById(R.id.button);

 You can see that the Button object is defined and then set to a view defined in the application
layout XML file. The findViewById() method is used to locate the exact view that is being
used as a view. This snippet is looking for a view that has been given an id of button . The
following shows the element from the layout XML where the button was created:

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/button_text"
 android:id="@+id/button"
 android:layout_below="@+id/textView"
 android:layout_centerHorizontal="true" />

 Even though the element in the XML is <Button> , it is still considered a view. This is because
 Button is what is called an indirect subclass of View . In total, there are more than 80 indirect
subclasses of View as of API level 21. There are 11 direct subclasses of View : AnalogClock ,
 ImageView , KeyboardView , MediaRouteButton , ProgressBar , Space , SurfaceView ,
 TextView , TextureView , ViewGroup , and ViewStub .

ptg16707593

60 Chapter 5 Views

 The AnalogClock Subclass

 The AnalogClock is a complex view that shows an analog clock with a minute-hand and an
hour-hand to display the current time.

 Adding this view to your layout XML is done with the following element:

 <AnalogClock
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/analogClock"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true" />

 This view can be attached to a surface by using the onDraw(Canvas canvas) method, and
it can be sized to scale to the screen it is being displayed on via the following method:

 onMeasure(int widthMeasureSpec, int heightMeasureSpec)

 It should be noted that if you decide to override the onMeasure() method, you must call
 setMeasuredDimension(int, int) . Otherwise, an IllegalStateException error will
be thrown.

 The ImageView Subclass

 The ImageView is a handy view that can be used to display images. It is smart enough to do
some simple math to figure out dimensions of the image it is displaying, which in turn allows
it to be used with any layout manager. It also allows for color adjustments and scaling the
image.

 Adding an ImageView to your layout XML requires the following:

 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/imageView"
 android:src="@drawable/car"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true" />

 To show multiple figures, you can use multiple ImageView s within a layout. Similar to other
views, you can attach events such as a click event to trigger other behavior. Depending on
the application you are building, this may be advantageous versus requiring the user to click a
button or use another widget to complete an action.

 The KeyboardView Subclass

 The KeyboardView is one of the most interesting views that exist. This is one of the true
double-edged components of the Android system. Using the KeyboardView allows you to

ptg16707593

61The View Class

create your own keyboard. Several keyboards exist in the Play store that you can download
right now and use on your Android device that are based on using the KeyboardView .

 The problem is that using an application with a custom keyboard means that all data entry
must pass through it. Every “keystroke” is passed through the application, and that alone tends
to send shivers down the spine of those who are security conscious. However, if you are an
enterprise developer and need a custom keyboard to help with data entry, then this view may
be exactly what you are looking for.

 Note

 The KeyboardView requires creating a new input type for your device, and the keyboard you
create will be accessible in all programs. This also means that users may opt to not use your
keyboard, and may even disable it as an option.

 Creating your own keyboard is an involved process. You need to do the following:

■ Create a service in your application manifest.

■ Create a class for the keyboard service.

■ Add an XML file for the keyboard.

■ Edit your strings.xml file.

■ Create the keyboard layout XML file.

■ Create a preview TextView .

■ Create your keyboard layout and assign values.

 The KeyboardView has several methods you can override to add functionality to your
keyboard:

■ onKey()

■ onPress()

■ onRelease()

■ onText()

■ swipeDown()

■ swipeUp()

■ swipeLeft()

■ swipeRight()

 You do not need to override all of these methods; you may find that you only need to use the
 onKey() method.

ptg16707593

62 Chapter 5 Views

 The MediaRouteButton Subclass

 The MediaRouteButton that is part of the compatibility library is generally used when working
with the Cast API. This is where you need to redirect media to a wireless display or ChromeCast
device. This view is the button that is used to allow the user to select where to send the media.

 Note that per Cast design guidelines, the button must be considered “top level.” This means
that you can create the button as part of the menu or as part of the ActionBar. After you create
the button, you must also use the .setRouteSelector() method; otherwise, an exception will
be thrown.

 First, you need to add an <item> to your menu XML file. The following is a sample <item>
inside of the <menu> element:

 <item
 android:id="@+id/mediaroutebutton_cast"
 android:actionProviderClass="android.support.v7.app.MediaRouteActionProvider"
 android:actionViewClass="android.support.v7.app.MediaRouteButton"
 android:showAsAction="always"
 android:visible="false"
 android:title="@string/mediaroutebutton"/>

 Now that you have a menu item created, you need to open your MainActivity class and use
the following import:

 import android.support.v7.app.MediaRouteButton;

 Next, you need to declare it in your MainActivity class:

 private MediaRouteButton myMediaRouteButton;

 Finally, add the code for the MediaRouteButton to the menu of the onCreateOptionsMenu()
method. Remember that you must also use setRouteSelector() on the MediaRouteButton .
The following demonstrates how this is accomplished:

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);
 getMenuInflater().inflate(R.menu.main, menu);

 myMediaRouteItem = menu.findItem(R.id.mediaroutebutton_cast);
 myMediaRouteButton = (MediaRouteButton) myMediaRouteItem.getActionView();
 myMediaRouteButton.setRouteSelector(myMediaRouteSelector);
 return true;
 }

 The ProgressBar Subclass

 The progress bar is a familiar UI element. It is used to indicate that something is happening
and how far along this process is. It is not always possible to determine how long an action will

ptg16707593

63The View Class

take; luckily, the ProgressBar can be used in indeterminate mode. This allows an animated
circle to appear that shows movement without giving a precise measurement of the status of
the load.

 To add a ProgressBar , you need to add the view to your layout XML. The following shows
adding a “normal” ProgressBar :

 <ProgressBar
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/progressBar"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true" />

 Other styles of ProgressBar may also be used. To change the style, you need to add a property
to the <ProgressBar> element. The following styles may be used:

 Widget.ProgressBar.Horizontal
 Widget.ProgressBar.Small
 Widget.ProgressBar.Large
 Widget.ProgressBar.Inverse
 Widget.ProgressBar.Small.Inverse
 Widget.ProgressBar.Large.Inverse

 Depending on your implementation, you may apply the style either with your styles.xml or
from your attrs.xml . For the styles from styles.xml , you would use the following:

 style="@android:style/Widget.ProgressBar.Small"

 If you have styles inside your attrs.xml file that you want applied to the progress bar, use the
following property in the <ProgressBar> element:

 style="?android:attr/progressBarStyleSmall"

 If you are planning on using the indeterminate mode, you need to pass a property of
 android:indeterminate into the <ProgressBar> element. You may also specify the loading
animation by setting the android:indeterminateDrawable to a resource of your choosing.

 A ProgressBar that is determinate requires updates to be passed to it via the setProgress()
or incrementProgressBy() method. These methods should be called from a worker thread.
The following shows an example of a thread that uses a Handler and an int for keeping the
progress value, and a ProgressBar has been initialized:

 new Thread(new Runnable() {
 public void run() {
 while (myProgress < 100) {

myProgress = doWork();
myHandler.post(new Runnable() {
public void run() {
myProgressBar.setProgress(myProgress);

}

ptg16707593

64 Chapter 5 Views

});
 }
 }
 }).start();

 The Space Subclass

 For those who have worked on layouts and visual interfaces, the Space view is one that is both
helpful and brings on somewhat lucid nightmares. This view is reserved to add “space” between
other views and layout objects.

 The benefit to using a Space is that it is a lightweight view that can be easily inserted and
modified to fit your needs without you having to do an absolute layout or extra work trying to
figure out how relative spacing would work on complex layouts.

 Adding a Space is done by adding the following to your layout XML:

 <Space
 android:layout_width="1dp"
 android:layout_height="40dp" />

 The SurfaceView Subclass

 The SurfaceView is used when rendering visuals to the screen. This may be as complex as
providing a playback surface for a live camera feed, or it can be used for rendering images on a
transparent surface.

 The SurfaceView has two major callbacks that act as lifecycle mechanisms that you
can use to your advantage: SurfaceHolder.Callback.surfaceCreated() and
 SurfaceHolder.Callback.surfaceDestroyed() . The time in between these methods
is where any work with drawing on the surface should take place. Failing to do so may cause
your application to crash and will get your animation threads out of sync.

 Adding a SurfaceView requires adding the following to your layout XML:

 <SurfaceView
 android:id="@+id/surfaceView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_weight="1" />

 Depending on how you are going to use your SurfaceView , you may want to use the follow-
ing callback methods:

■ surfaceChanged()

■ surfaceCreated()

■ surfaceDestroyed()

ptg16707593

65The View Class

 Each of these callback methods gives you an opportunity to initialize values, change them,
and more importantly free some system resources up when it is released. If you are using a
 SurfaceView for rendering video from the device camera, it is essential that you release control
of the camera during the surfaceDestroyed() method. Failing to release the camera will
throw errors when you attempt to resume usage of the camera in either another application
or when your application is resumed. This is due to a new instance attempting to open on a
resource that is finite and currently marked as in use.

 The TextView Subclass

 The TextView is likely the first view added to your project. If you create a new project in
Android Studio that follows the default options, you will be given a project that contains a
 TextView with a string value of “Hello World” in it.

 To add a TextView , you need to add the following code to your layout XML file:

 <TextView
 android:text="@string/hello_world"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

 Note that in the previous example, the value for the TextView is taken from @string/
hello_world . This value is inside of the strings.xml file that is in your res/values folder
for your project. The value is defined in strings.xml as follows:

 <string name="hello_world">Hello world!</string>

 The TextView also contains a large number of options that can be used to help format, adjust,
and display text in your application. For a full list of properties, visit http://developer.android.
com/reference/android/widget/TextView.html .

 The TextureView Subclass

 The TextureView is similar to the SurfaceView but carries the distinction of being tied
directly to hardware acceleration. OpenGL and video can be rendered to the TextureView , but
if hardware acceleration is not used for the rendering, nothing will be displayed. Another differ-
ence when compared to SurfaceView is that TextureView can be treated like a View . This
allows you to set various properties including setting transparency.

 In similarity to SurfaceView , some methods need to be used with TextureView in order
for proper functionality. You should first create your TextureView and then use either
 getSurfaceTexture() or TextureView.SurfaceTextureListener before using
 setContentView() .

 Callback methods should also be used for logic handling while working with the TextureView .
Paramount among these callback methods is the onSurfaceTextureAvailable() method.
Due to TextureView only allowing one content provider to manipulate it at a time, the

http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/TextView.html

ptg16707593

66 Chapter 5 Views

 onSurfaceTextureAvailable() method can allow you to handle IO exceptions and to make
sure you actually have access to write to it.

 The onSurfaceTextureDestroyed() method should also be used to release the content
provider to prevent application and resource crashing.

 The ViewGroup Subclass

 The ViewGroup is a special view that is used for combining multiple views into a layout. This
is useful for creating unique and custom layouts. These views are also called “compound views”
and, although they are flexible, they may degrade performance and render poorly based on the
number of children included, as well as the amount of processing that needs to be done for
layout parameters.

 CardView
 The CardView is part of the ViewGroup that was introduced in Lollipop as part of the v7
support library. This view uses the Material design interface to display views on “cards.” This is
a nice view for displaying compact information in a native Material style. To use the CardView ,
you can load the support library and wrap your view elements in it. The following demon-
strates an example:

 <RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".MainActivity">

 <android.support.v7.widget.CardView
 xmlns:card_view="http://schemas.android.com/apk/res-auto"
 android:id="@+id/card_view"
 android:layout_gravity="center"
 android:layout_width="200dp"
 android:layout_height="200dp"
 card_view:cardCornerRadius="4dp"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true">

 <TextView android:text="@string/hello_world"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 </android.support.v7.widget.CardView>
 </RelativeLayout>

ptg16707593

67The View Class

 This example shows a card in the center of the screen. The color and corner radius can be
changed via attributes in the <android.support.v7.widget.CardView> element. Using
 card_view:cardBackgroundColor will allow you to change the background color, and using
 card_view:cardCornerRadius will allow you to change the corner radius value.

 Note

 Using the CardView support library requires you to edit your Gradle build files. You need to add
the following line to the dependencies section in your build.gradle file:
 dependencies {
 compile 'com.android.support:cardview-v7:21.+'
 }

 You should change the version number targeted on the end to match your project target.

 RecyclerView

 The RecyclerView was also added in Lollipop as part of the v7 support library. This
view is a replacement for the aging ListView . It brings with it the ability to use a
 LinearLayoutManager , StaggeredLayoutManager , and GridLayoutManager as well as
animation and decoration support. The following shows how you can add this view to your
layout XML:

 <android.support.v7.widget.RecyclerView
 android:id="@+id/my_recycler_view"
 android:scrollbars="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>

 Similar to with a ListView , after you have added the RecyclerView to your layout, you
then need to instantiate it, connect it to a layout manager, and then set up an adapter to
display data.

 You instantiate the RecyclerView by setting it up as follows:

 myRecyclerView = (RecyclerView) findViewById(R.id.my_recycler_view);

 The following shows connecting to a layout manager using the LinearLayoutManager that is
part of the v7 support library:

 myLayoutManager = new LinearLayoutManager(this);
 myRecyclerView.setLayoutManager(myLayoutManager);

 All that is left is to attach the data from an adapter to the RecyclerView . The following
demonstrates how this is accomplished:

 myAdapter = new MyAdapter(myDataset);
 myRecyclerView.setAdapter(myAdapter);

ptg16707593

68 Chapter 5 Views

 The ViewStub Subclass

 The ViewStub is a special view that is used to create views on demand in a reserved space.
The ViewStub is placed in a layout where you want to place a view or other layout elements
at a later time. When the ViewStub is displayed—either by setting its visibility with
 setVisibility(View.VISIBLE) or by using the inflate() method—it is removed and the
layout it specifies is then injected into the page.

 The following shows the XML needed to include a ViewStub in your layout XML file:

 <ViewStub
 android:id="@+id/stub"
 android:inflatedId="@+id/panel_import"
 android:layout="@layout/progress_overlay"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom" />

 When the ViewStub is inflated, it will use the layout specified by the android:layout
property. The newly inflated view will then be accessible via code by the ID specified by the
 android:inflatedId property.

 Creating a Custom View

 When developing your own application, you may need a view that doesn’t come “out of the
box.” When this occurs you have two options: You can create a class for your own custom view
or you may extend one of the existing views.

 To create your own, you need to create a new class, have it extend View , and have it override at
least one method. You will also be adding the variables and logic needed to handle the custom
properties you will be adding to your view. The following shows a custom view along with the
values used as custom properties:

 public class MyView extends View {
 private int viewColor, viewBgColor;

 public MyView(Context context, AttributeSet attrs) {
 super(context, attrs);

 TypedArray a = context.getTheme().obtainStyledAttributes(attrs,
R.styleable.MyView, 0, 0);

 try {
viewColor = a.getInteger(R.styleable.MyView_viewColor);
viewBgColor = a.getInteger(R.styleable.MyView_viewBgColor)

 } finally {
 a.recycle();
 }

ptg16707593

69Creating a Custom View

 @Override
 protected void onDraw(Canvas canvas) {

// draw your view
 }
 }
 }

 You want to be able to pass values through the XML when used with your application layout
XML. To do this you can add an XML file to the res/values folder. This folder houses
 <resources> with child <declare-styleable> elements. The following shows an example
of a custom view XML file:

 <?xml version="1.0" encoding="utf-8"?>
 <resources>
 <declare-styleable name="MyView">
 <attr name="viewColor" />
 <attr name="viewBgColor" />
 </declare-styleable>
 </resources>

 Now you can add your custom view to your application layout, but you need to add a prop-
erty so that your custom view can be found. This is done by adding the following line to your
layout element:

 xmlns:custom="http://schemas.android.com/apk/res/com.dutsonpa.mycustomview"

 Notice that you need to change the value to match your namespace by replacing
com.dutsonpa.myview with your own package name. Once you add that to your layout
element, you can add your custom view. This is done by referencing the package and then
adjusting or setting the values you want to use. The following shows an example of a custom
view being added with values being set:

 <com.dutsonpa.mycustomview.myview
 android:id="@+id/"
 custom:viewColor="#33FF33"
 custom:viewBgColor="#333333" />

 Notice that Android properties may be used and that your custom properties are used by
employing custom:valueName . This provides some flexibility by allowing some built-in
features to be mixed with your custom attributes.

 The last thing you should do is add getter and setter methods for your attributes. These can be
added to your class as follows:

 public void getViewColor() {
 return viewColor;
 }

http://schemas.android.com/apk/res/com.dutsonpa.mycustomview"

ptg16707593

70 Chapter 5 Views

 public void getViewBgColor() {
 return viewBgColor;
 }

 public void setViewColor(int newViewColor) {
 viewColor=newViewColor;
 invalidate();
 requestLayout();
 }

 public void setViewBgColor(int newViewBgColor) {
 viewBgColor=newViewBgColor;
 invalidate();
 requestLayout();
 }

 By using invalidate() and requestLayout() , the layout is forced to redraw using the
 onDraw() method that is being employed by the custom view.

 Summary

 In this chapter, you learned what views are and how they are used in applications. You learned
that views have multiple subclasses that can be used as is or extended by making a custom
 View .

 You learned about the main subclasses and how to implement them into your application
layout XML file, as well as some code that may be used to accompany them.

 You also learned about two views that were introduced with Android Lollipop: CardView and
 RecyclerView . These views are complex ViewGroup s that can help display data in the Material
design style and update the aging ListView .

ptg16707593

 6
 Layout

 Android applications are made to be seen, touched, and interacted with. To achieve this, you
need to create a layout that your application will use to display the interface to the user. There
are several ways to create your layout, and this chapter introduces you to the various layouts
available and how they can be used in your application.

 Layout Basics

 You have two ways to control the layout you use in your application. As you learned in
 Chapter 5 , “Views,” View s and ViewGroup s can be created programmatically and edited. Some
developers will be more comfortable creating and destroying layouts in this manner, but the
application layout can also be created via XML.

 When creating a new project in Android Studio, you will find a file in the res/layout folder
that should be named after your Activity. If your Activity was named “main,” then you will
find a file named activity_main.xml . If you are not using Android Studio or would rather
create your own layout file, this can be done by creating your XML file in the same folder,
 res/layout , and then referencing the layout file in your Activity class. The following shows
referencing the file in the onCreate() method of the Activity class:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.custom_main.xml);
 }

 The most important part of this sample code is the line setContentView(R.layout.custom_
main.xml); . This is how the custom XML, custom_main.xml , is referenced and used. By
changing the referenced file, you can use different layout files. This may not seem beneficial
at first; however, if you happen to be experimenting with several different layouts, you can
quickly swap them out without having to copy and paste or copy over your existing layout file.

ptg16707593

72 Chapter 6 Layout

 Layout Measurements

 The layout XML structure is a fairly simple XML syntax that contains properties you can use to
help define how the layout and any child objects it contains are displayed. It is important to
note that some properties affect how the layout is sized. In these instances, you should do your
best to avoid pixel (px) values and instead use density-independent pixels (dp).

 The reason why you should avoid using px units, whenever possible, is that when working
with the myriad of devices available, you will find that not all pixels are the same. In the dark
days before mobile devices gained popularity, most monitors that were used with computers all
contained roughly the same pixel density as each other. This allowed a fairly standard unit of
measurement to be used because pixels were a simple 1:1 ratio. Things started to get shaken up
a bit when various hardware manufacturers found that they could create smaller screens with
pixels that could fit in roughly half the same space as a standard pixel would take up. The ratio
for pixel calculations suddenly switched to 2:1. This allowed incredibly detailed images and
visuals onscreen that could be displayed with high clarity and sharpness. Whether it is fortu-
nate or unfortunate is up for debate; however, increasing the pixel density didn’t stop a 2:1,
and now there are devices that have pixel ratios of 3:1, 4:1, and higher. Figure 6.1 demonstrates
this problem on devices with different resolutions and pixel density ratios.

 Figure 6.1 The image is set to 640px by 360px; however, it displays in a different size on a
9" 281ppi tablet (left), a 5” 565ppi phone (middle), and an 8” 283ppi tablet (right).

 To alleviate this particular issue, the density-independent pixel was created. This measure-
ment unit comes built in with a little extra math to figure out the pixel density of the screen
and runs that against the entered number of dp units that a layout or object should take. This
solves the pixel measurement problem by always returning the exact number of pixels to use.

ptg16707593

73Layout Basics

 You may find when you are developing that even though you are using dp units, your design
or layout will not fit or starts to look a bit ridiculous on very large or small screens. Starting
with Android 3.2, screens were grouped together based on the amount of dp units they
contain. This makes it possible for you to use different layout files that fit the screen used to
view your application.

 The size groupings are as follows:

■ ldpi : 120dpi

■ mdpi : 160dpi

■ hdpi : 240dpi

■ xhdpi : 320dpi

■ xxhdpi : 480dpi

■ xxxhdpi : 640dpi

 Using these groupings, you can provide not only layouts, but also other assets such as images.
To provide these resources, you need to create folders and place the resources you want loaded
for devices that match that screen size. For example, if you want to provide a special layout for
extra-dense devices, you could create a folder called layout-xhdpi in your /res folder. You
would then place your layout XML file there. Note that it must be the same name as the layout
XML file in the /res/layout folder.

 As you are defining the size of the elements in your layout, you should be aware of the
wrap_content and match_parent settings. When you have an element that is going to be
dynamic in size, you may want to use wrap_content because this will allow the view or widget
to expand based on the content it contains. If you would like to force content to be constricted
by the size of the parent container or view group, you should use match_parent .

 When working with text, you should use scale-independent pixels (sp), which will scale
displayed text based on user preferences as well as the screen density of the device. Because the
sp unit will take into consideration user preferences, it is not a safe unit of measurement to use
when setting the dimensions of layouts.

 Layout Coordinates

 Each layout type or container has a way of allowing you to place specific items; however, you
can also get specific positioning information programmatically by using the getTop() and
 getLeft() methods. Similar to how web developers position elements, views are treated as
rectangular objects that are placed on an X/Y axis, with 0 being the very top and left locations.
 Figure 6.2 shows a view positioned at 0,0 on an X/Y axis.

 You can leverage two helper functions, getBottom() and getRight() , to figure out the
bottom and right locations of a view. These are helper functions because they are shortcuts
to combining two functions to determine view placement. Using getBottom() is a shortcut

ptg16707593

74 Chapter 6 Layout

to using getTop() + getHeight() . Using getRight() is a shortcut to using getLeft() +
getWidth() .

 Figure 6.2 Using getTop() and getLeft() would return 0 for each function because the view
is placed at the very top-left location.

 Now that you are aware of the properties and values that are used when adding elements to
your layout XML, it is time to learn about the various layout styles that you can use in your
application.

 Layout Containers

 Each layout starts with a basic container that you use to fill with child views. Each layout style
has a reason why it should be used, as well as reasons why it might not be the best choice for
your application. In this section, you learn about linear, relative, table, and frame layouts, as
well as WebView , which is a special container that is used to display web content.

 Linear Layout

 The linear layout is named after the way it uses direction to align child elements. You can align
child elements in either a horizontal or vertical fashion. This orientation is adjusted by setting
the value of the android:orientation property in the <LinearLayout> element.

ptg16707593

75Layout Containers

 The following shows the contents of a layout XML file using a linear layout with buttons
and text:

 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".MainActivity"
 android:orientation="vertical" >

 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Button 1"/>
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Button 2"/>
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Button 3"/>
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="This is vertical orientation"
 android:gravity="center"/>

 </LinearLayout>

 The android:orientation has been set to vertical , which allows all child elements to be
stacked vertically. It is also important to note that elements have had the android:layout_
width property set to match_parent . This allows the elements to be full width. Figure 6.3
shows this layout displayed on an Android device.

 It is not possible to use android:layout_height="match_parent" when displaying elements
vertically because every element would stretch to fill the screen and leave each element stacked
on top of the other.

 You can adjust how much room each child view takes by setting the android:layout_weight
property. This takes a numeric value that is then used to decide how much space a particular
child view should be allowed to take. If you decide that you want all child views to take the
same amount of space, you can either set each view to android:layout_height with a value

ptg16707593

76 Chapter 6 Layout

of 0dp for an equal vertical orientation or you can set each view to android:layout_width
with a value of 0dp for an equal horizontal orientation.

 Figure 6.3 The buttons and text are positioned starting at the top of the layout and continuing
down vertically.

 To change the orientation to horizontal, you should change the value of the
 android:orientation property to horizontal, and then each child element will need to have
the android:layout_height and android:layout_width properties adjusted.

 Figure 6.4 demonstrates the same layout adjusted to be displayed horizontally.

 Relative Layout

 The relative layout is used when you have a complex user interface that requires specific
sizing and relies on knowing where a view or layout element will be. It thus is named because
elements are placed based on the relative proximity or position of other elements in the layout
as well as to the containing layout.

 The relative layout provides a somewhat flexible and adaptable interface. Elements can be told
to position based off of the center, left, right, top, or bottom of the parent view. This can also
be combined with placement values off of other child views that are already positioned.

ptg16707593

77Layout Containers

 The following shows a layout XML file that uses a relative layout to position text and four
buttons:

 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".MainActivity">

 <TextView
 android:text="Relative layouts allow flexible positioning"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true" />

 Figure 6.4 Text becomes almost impossible to read when there are too many elements being
forced into a cramped area.

ptg16707593

78 Chapter 6 Layout

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button 1"
 android:id="@+id/button"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button 2"
 android:id="@+id/button2"
 android:layout_below="@id/button"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button 3"
 android:id="@+id/button3"
 android:layout_alignTop="@id/button2"
 android:layout_alignParentRight="true"
 android:layout_alignParentEnd="true" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button 4"
 android:id="@+id/button4"
 android:layout_below="@id/button2"
 android:layout_centerHorizontal="true" />

 </RelativeLayout>

 Rather than use gravity to adjust how text is displayed, the TextView is placed at the
top of the page in the center by using android:layout_alignParentTop="true" and
 android:layout_centerHorizontal="true" . Buttons 2, 3, and 4 are positioned based off
of Button 1, which is placed directly in the center of the layout. Some extra properties are also
used to align Buttons 2 and 3 to the left and right sides of the layout. Figure 6.5 demonstrates
what the layout appears like when viewed on an Android device.

 Another reason you should consider using a relative layout is that rather than create complex
layouts by nesting multiple linear layouts, you can create the same type of interface without
complicating the layout. By avoiding nesting layouts, you are able to keep the layout “flat.”
This decreases the amount of processing needed to display your layout and speeds up the
screen rendering of your layout.

ptg16707593

79Layout Containers

 Table Layout

 Table layouts are similar to how HTML table elements work. A table layout aligns child
elements into rows and columns. Unlike tables in HTML, cell borders are never displayed and
cells may be empty.

 The table layout introduces some interesting formatting logic. By using android:gravity , you
can adjust the text layout for elements. This may be needed as the size of columns is deter-
mined by the column that needs the most width or has the largest content.

 You may think that you will just adjust the width of each element manually, but each child
added to the table layout will default to a width of match_parent . The height is changeable,
but has a default value of wrap_content . The following demonstrates a table layout with two
rows containing TextView s and Button s:

 <TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:stretchColumns="1"
 android:padding="10dp">

 <TableRow>
 <TextView

android:text="Name:"
android:padding="5dp"/>

 <TextView
android:text="Jonathan Generic"
android:gravity="end"

 Figure 6.5 Regardless of device orientation, Button 1 is always at the center of the screen.

ptg16707593

80 Chapter 6 Layout

android:padding="5dp"/>
 </TableRow>

 <TableRow>
 <Button

android:text="Button 1"
android:id="@+id/button"/>

 <Button
android:text="Button2"
android:id="@+id/button2" />

 </TableRow>

 </TableLayout>

 Although you cannot set explicit widths for child elements, you can create columns that are
the same width by adding android:layout_width="0dp" and android:layout_weight="1"
to elements in a row to force the table to render the columns with an equal width. The follow-
ing shows the properties applied to the <Button> elements:

 <TableRow>
 <Button
 android:layout_width="0dp"
 android:layout_weight="1"
 android:text="Button 1"
 android:id="@+id/button"/>
 <Button
 android:layout_width="0dp"
 android:layout_weight="1"
 android:text="Button2"
 android:id="@+id/button2" />
 </TableRow>

 This also requires that the <TableLayout> element contains a property of
 android:stretchColumns="1" . Figure 6.6 shows how this fix was used to change the button
alignment.

 Table layouts are best for displaying tabular data. This is data or visuals that require a grid or
specific spacing to allow the user to read and comprehend data quickly without trying to deci-
pher a design to get the data they are looking for.

 Frame Layout

 The frame layout is used either when you would like to reserve screen space for a single view or
when you are creating overlays that have a z-index effect. The spatial effect is achieved due to
how the frame layout handles child elements. It positions them into a stack, with the first item
added on the bottom and the last item added on the top.

ptg16707593

81Layout Containers

 The following demonstrates a frame layout that contains two TextView s and an ImageView :

 <FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="This text is under the image in the stack"/>

 <ImageView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:src="@drawable/car"
 android:layout_gravity="center"/>

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

 Figure 6.6 The buttons auto-align, leaving one small and the other large (left). With properties
set, the buttons take an equal full column width (right).

ptg16707593

82 Chapter 6 Layout

 android:text="This text is over the image"
 android:textColor="#ffffff"
 android:id="@+id/textView"
 android:layout_gravity="center" />
 </FrameLayout>

 The z-index or layering effect occurs in a first-in, first-out fashion. The first TextView is placed
on the very first level, or the bottom of the stack. The ImageView is placed in the middle,
above the first TextView but below the last TextView . Figure 6.7 shows this layout in two
different orientations to help show how the layering is rendered.

 Figure 6.7 When rotated to landscape, the first TextView appears cut off as the text goes
behind the ImageView .

 A frame layout can be used for overlay information or can be used with animation to add a
little visual flair to your application. You should keep the child views contained in the layout
to as few as possible in order to minimize managing the views in the stack. You can nest
 <FrameLayout> elements should you need to manipulate different sets or combine views
together.

 WebView

 A WebView is not specifically a layout container; instead, it is a special view that allows you to
display a web page inside of your application. This view is typically used to provide a help page
or show the End-User License Agreement, or it is used inside of applications that allow you
to open links in a browser without leaving the application. These applications are commonly
social network or news applications. By allowing users to view web content without leaving
your application, you are giving them a more powerful application that becomes an all-in-one

ptg16707593

83Summary

solution for their needs. WebView s are also special because they get their own update through
Google Play, which is similar to how Google Play Services are kept up to date.

 A WebView also has the unique ability to pass some information between web page and device.
This allows some features of the device to be triggered from the web page. This does not
impede security because WebView s are still sandboxed to prevent full system access.

 To add a WebView to your application, you need to add the following code to your layout
XML file:

 <WebView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/webview"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

 Note that if you are loading data from an Internet resource, you must also include the follow-
ing permission in your application manifest:

 <uses-permission android:name="android.permission.INTERNET" />

 The URL that you want to load can then be passed to the view through your application logic
by using the .loadUrl() method.

 Tip

 By default, WebView will not allow JavaScript to execute. If you require JavaScript processing,
including triggering native functions such as a toast in your application, you must set the appli-
cation to allow it. This can be done by adjusting the WebView settings like so:

 WebView myWebView = (WebView) findViewById(R.id.webview);
 WebSettings webSettings = myWebView.getSettings();
 webSettings.setJavaScriptEnabled(true);

 Methods that you want to be accessible via JavaScript must be public and must use the
@JavascriptInterface annotation. The annotation is required when working with
Android API level 17 and above.

 Summary

 In this chapter, you learned about how layouts can be created and managed for your appli-
cation. You learned about different size values and that pixels may be calculated differently
depending on the device a user has. This means that using dp values is a safe way to adjust
layout sizing.

 You learned about how linear, relative, table, frame layout elements are added to your appli-
cation layout XML and how they can be used. This included examples of when each type of
layout is beneficial and should be considered.

 Finally, you learned that a special view called a WebView can be used to display web content
and why you may want to include a WebView in your application.

ptg16707593

This page intentionally left blank

ptg16707593

 7
 App Widgets

 Part of the charm of using the Android platform is the ability to customize your experience.
This can be done by moving and adjusting applications as well as adding widgets to your home
and lock screens. Widgets were originally introduced in Android 1.5 (Cupcake) and have been
a hit ever since. As newer versions of Android have been released, improvements have been
made to how widgets (also known as app widgets) are placed, formatted, and displayed. In this
chapter, you learn how app widgets are created.

 A simple way to classify app widgets is as useful extensions of a full application. That is not to
say that they must come bundled with a full application, but by doing so you can offer a fully
functional detailed application along with streamlined widgets.

 Widgets are not limited to only providing information; they can house several different views
and can be used as controls for other applications by listening for and responding to different
Intents. When working with Android 4.2+, app widgets are not limited to the home screen but
can be added to the lock screen as well. This allows users the ability to see summaries, get quick
information, and more, without having to unlock their device.

 Note

 Due to specific interaction that is already used by the main UI, widgets are limited to vertical
scrolling and tapping only. Keeping this in mind will help you create a better widget and save
you from trying to implement gestures and interactions that will not be possible.

 When creating an app widget, you need to follow four steps:

1. Create a layout XML for the app widget.

2. Create an AppWidgetProviderInfo object via XML.

3. Create an AppWidgetProvider class file to contain widget logic.

4. Modify the application manifest to support the widget.

ptg16707593

86 Chapter 7 App Widgets

 There is not a specific order in which the preceding steps must be implemented, but all four
must be completed for an app widget to work.

 Tip

 Using Android Studio allows you to create all the necessary files for an app widget in just a
few clicks:

1. Create a new base application.

2. Right-click the res folder and choose New, Widget, App Widget.

3. Name the widget and choose your placement, resizable option, width, and height.

4. A new AppWidgetProvider class file, an XML layout file, and AppWidgetProvider
object XML will be generated and placed in your project; your application manifest will
also be updated automatically.

 App Widget Layouts

 In the same way that a standard application has a layout XML file, app widgets also take advan-
tage of a layout XML file. This file is generally stored in the same location as the application
XML file. When you’re working with Android Studio, this means that the file will be found in
/res/layout . Naming the file is personal preference, but to keep things consistent, it should
be named after the app widget, similarly to how the application layout is named after the
Activity that it represents.

 Just like the layout for an application or Activity, the app widget layout file is used to display
various layout containers. Unlike standard Activities or views, app widgets are based on Remote
Views and, as such, are limited to the following layout containers:

■ FrameLayout

■ LinearLayout

■ RelativeLayout

■ GridLayout

 They also are limited to the following widgets and views:

■ AnalogClock

■ Button

■ Chronometer

■ ImageButton

■ ImageView

ptg16707593

87App Widget Layouts

■ ProgressBar

■ TextView

■ ViewFlipper

■ ListView

■ GridView

■ StackView

■ AdapterViewFlipper

 To put this together, Listing 7.1 demonstrates an app widget layout XML file.

 Listing 7.1 Sample Layout XML File for an App Widget

 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent" android:layout_height="match_parent"
 android:padding="@dimen/widget_margin" android:background="#A4C639">

 <TextView android:id="@+id/appwidget_text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:layout_centerHorizontal="true"
 android:layout_centerVertical="true" android:text="@string/appwidget_text"
 android:textColor="#ffffff" android:textSize="24sp"
 android:textStyle="bold|italic"
 android:layout_margin="8dp"
 android:contentDescription="@string/appwidget_text"
 android:background="#A4C639" />
 </RelativeLayout>

 On the first line of Listing 7.1 , you can see that a RelativeLayout element is used with some
basic settings to help shape the appearance of the widget. You should take special note of the
 android:padding="@dimen/widget_margin" property. By default, this is set to 8dp ; however,
because the reference here, the value will change based on the screen size of the device. This is
done by pulling the value from the res/values/dimens.xml , res/values-v14/dimens.xml ,
and res/values-w820dp/dimens.xml files.

 Prior to API 14 (Android 4.0 Ice Cream Sandwich), app widget margins were not automatically
configured and margins could extend from edge to edge, from widget to widget, and to the
entire screen. Because this could potentially lead to a poor user experience, an 8dp margin is
added to app widgets by the system for API 14+. To make your app widget work on as many
devices as possible and still retain proper style standards, you can create two resources and
invoke them based on the API that the device running your app widget is currently on. The
first resource should be placed in the file /res/values/dimens.xml . This file should contain
the following:

ptg16707593

88 Chapter 7 App Widgets

 <resources>
 <dimen name="activity_horizontal_margin">16dp</dimen>
 <dimen name="activity_vertical_margin">16dp</dimen>

 <dimen name="widget_margin">8dp</dimen>
 </resources>

 The addition of the dimen element with a property of name="widget_margin" sets a global
value of 8dp that is used by all. Because this is a global setting, you need to add another file
that is used by Android devices running API level 14+. This is done by adding another resource
located at /res/values-v14/dimens.xml . This should contain the following:

 <resources>
 <dimen name="widget_margin">0dp</dimen>
 </resources>

 This value overwrites the previous global and will allow the Android system to apply the
correct margins to the app widget.

 With the RelativeLayout element for the app widget taken care of, let’s look at the TextView
found in Listing 7.1 . This TextView has several properties that should be read over care-
fully. Properties such as android:layout_centerVertical="true" and android:layout_
centerHorizontal="true" have been added. These properties have been applied to help keep
content where it should be. App widgets by nature should be forgiving due to being resized and
needing to accommodate devices with varying pixel densities. By using a centering technique,
you can be sure that your app widget will appear nearly the same on every device that it is
shown on.

 Figure 7.1 demonstrates how this app widget renders on an Android device.

 The layout for the app widget is only one of half of how the widget is displayed. The
 AppWidgetProviderInfo object contains other options that change how your app widget is
displayed.

 The AppWidgetProviderInfo Object

 The AppWidgetProviderInfo object is an XML metadata file located in the /res/xml/ folder.
It is used to contain the following settings and information for the app widget:

■ Minimum width

■ Minimum height

■ Update frequency

■ Preview image

■ Widget category

ptg16707593

89The AppWidgetProviderInfo Object

■ Initial layout for home screen

■ Initial layout for lock screen

■ Option to resize

 Figure 7.1 The widget appears with a background and text styles applied.

 App Widget Sizing

 The recommended and default maximum width and height for a widget is 4×4 cells. It is
possible to program your layout to be larger than this, but you will run into compatibility
problems when running on the app widget on different devices. You can set the minimum
width and height of your app widget by using the properties android:minWidth and
 android:minHeight . Because there are so many devices with different resolutions, screen sizes,
and pixel densities, you should use dp units when setting the values for these properties.

 You can use the following formula to figure out how many dp units should be placed in these
properties to match a cell unit:

 Number of cells = (i*70) – 30

 In this formula, i is the number of cells you would like to use. Using this formula, you can
determine the following sizing information:

ptg16707593

90 Chapter 7 App Widgets

■ 1 cell = 40dp

■ 2 cells = 110dp

■ 3 cells = 180dp

■ 4 cells = 250dp

 With that information, you can create an app widget that fits the layout you want. For
example, if your layout looks best at 2 cells wide by 1 cell tall, you would set the size by using
 android:minWidth="110dp" android:minHeight="40dp" .

 Update Frequency

 The android:updatePeriodMillis property is used to adjust how often your app widget will
run through the onUpdate() method. This setting does not guarantee that the update method
will be run at the exact moment you specify, but it will run near when specified. It should
be noted that no matter how small of a number you place as the value for the property, the
system will not run the update more than once every 30 minutes (180,000ms).

 This setting should be handled with care because it will impact the user’s battery. The recom-
mendation is to set your update to at least 60 minutes. No matter what update timing you use,
the update will schedule a job for the device to run around the specified time. This means that
even if the device is sleeping, it will be forced to wake up, execute the update, and then wait to
become idle before sleeping again.

 If you would like to let the device sleep and only update when awake, it is possible to set this
property to 0 and use an alarm Intent with the AlarmManager set as type RTC or ELAPSED_
REALTIME to control the updating frequency of the app widget.

 Preview Image

 The previewImage property was added in API 11 (Android 3.0 Honeycomb) and allows you to
specify a drawable asset that will be used on the widget selection screen as a preview of what
your widget will look like. Figure 7.2 shows the widget selection screen on a device.

 There is a utility installed by default in the Android emulator called Widget Preview. When you
open this application, you are given the option of selecting a widget that is installed on the
device. After you have picked your widget, it is then displayed and you are given the option
of taking a snapshot or emailing the preview image. Figure 7.3 shows the widget selection and
preview screens of this application.

 If you do not have an account set up on your emulator, the application may crash when you
attempt to email the asset to yourself. If you save the preview, it will be saved to the Download
folder on the emulated device. You can use the adb command from terminal to pull the file to
your desktop.

ptg16707593

91The AppWidgetProviderInfo Object

 Figure 7.2 Creating a preview that matches what your
app widget looks like will help users decide which widget
to use.

 Figure 7.3 Your
widget should appear
on the list (left). Once
selected, the widget is
rendered and can be
saved (right).

ptg16707593

92 Chapter 7 App Widgets

 Once the asset has been saved, you can place it in the /res/drawables folder of your project.
It can then be referenced by setting the value to it like so:

 android:previewImage="@drawable/example_appwidget_preview"

 You are not limited to providing a resource that looks exactly like your widget; however, for
the best user experience, try to match the preview to what your widget will look like.

 Widget Category

 App widgets originated on the home screen, but starting with API 17 (Android 4.2 Jelly Bean)
app widgets were allows to be added to the lock screen. To accommodate this addition, the
 android:widgetCategory property is used. This property can accept the following values:

■ home_screen

■ keyguard

■ home_screen|keyguard

 The home_screen value is the standard setting that allows the app widget to be placed on the
main UI screen. Using a value of keyguard will place the widget only on the lock screen. When
you specify this value, the app widget will not appear as an option to be placed on the home
screen. Using a value of home_screen|keyguard allows your widget to be placed on both the
home screen and the lock screen.

 Warning

 Be careful with what a widget is allowed to do and display when allowing access from the lock
screen. If personal or private information is displayed through your app widget, it will show on
the lock screen, potentially compromising user data should the device ever be misplaced or
stolen.

 Widget Category Layout

 When providing the app widget access to the home screen and/or lock screen, it makes sense
that you may want to offer a different layout. This can help with displaying sensitive infor-
mation or by providing a layout that is more streamlined for a quick glance without extra
interaction.

 To specify a specific layout for the home screen and lock screen, you use the
 android:initialLayout and android:initialKeyguardLayout properties. If you want both
to use the same layout, you would set the properties to the same value, like so:

 android:initialLayout="@layout/my_app_widget"
 android:initialKeyguardLayout="@layout/my_app_widget"

ptg16707593

93The AppWidgetProviderInfo Object

 By using @layout/my_app_widget , the layout stored in /res/layout/my_app_widget.xml
will be used for displaying and positioning elements on the widget. To change layout based on
screen, you just need to reference another file for the value.

 Note that the property contains the word “initial,” because you have the ability to program-
matically change the layout file that is used, but when the app widget is first rendered, it will
use the file listed as the value of this property.

 Resizable Mode

 The ability to resize widgets was added in API 11 (Android 3.0 Honeycomb). This was when
the ability to tap and hold an app widget to resize it was introduced. Not all widgets will resize,
and the option of allowing the resize is based on the value placed in the android:resizeMode
property.

 The android:resizeMode property can accept none , horizontal , and vertical . Beginning
with API 12 (Android 3.1 Honeycomb), another option was introduced allowing resizing to
occur on both axes by supplying the value of horizontal|vertical .

 Sample AppWidgetProviderInfo Object

 Now that you have seen what goes into an AppProviderWidgetInfo object, you should be
familiar with the following sample file:

 <?xml version="1.0" encoding="utf-8"?>
 <appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
 android:minWidth="110dp" android:minHeight="40dp"
 android:updatePeriodMillis="86400000"
 android:previewImage="@drawable/example_appwidget_preview"
 android:initialLayout="@layout/my_app_widget"
 android:resizeMode="horizontal|vertical"
 android:widgetCategory="home_screen"
 android:initialKeyguardLayout="@layout/my_app_widget"></appwidget-provider>

 Note that in the previous widget layout, the android:initialKeyguardLayout attribute is
set. This does not need to be defined when working with a home screen–only widget, but is
included here because Android Studio currently includes the value when creating a widget. If
you do not plan on creating a lock screen widget, this attribute can be safely removed.

 This file can be named anything you want, but should reside in the /res/xml folder.
As per XML guidelines, the file should begin with an XML declaration and then any
document elements. The <appwidget-provider> is then declared with a namespace of
http://schemas.android.com/apk/res/android . Inside, you will find all the previously
mentioned properties that help define how your app widget is displayed.

http://schemas.android.com/apk/res/android

ptg16707593

94 Chapter 7 App Widgets

 The AppWidgetProvider Class

 The AppWidgetProvider class should reside in your source package and can be named
anything that makes sense to you. For ease of maintenance and development, I recommend
naming it after the app widget you are creating.

 As an example, I have created an application named “MyAppWidget” with an Activity named
 MainActivity . This means that both MainActivity.java and MyAppWidget.java will be
found at src/main/java/com/dutsonpa/appwidget/ . Note that your package name should
replace mine in the path.

 The class file should extend AppWidgetProvider and contain at least the onUpdate() method.
The following methods may be used:

■ onUpdate() : Runs during the update lifecycle of the app widget

■ onAppWidgetOptionsChanged() : Runs on widget creation and every time the widget is
resized

■ onDeleted(Context, int[]) : Runs whenever an app widget is removed

■ onEnabled(Context) : Runs when the first instance of a widget is added

■ onDisabled(Context) : Runs when the last instance of a widget is removed

■ onReceive(Context, Intent) : Not generally needed, but will run for every broadcast
and before any other callback methods

 Among the listed callback methods, the onUpdate() method is paramount because it
is where Intents are parsed and executed. This is also where you attach click events by
using setOnClickPendingIntent(int, PendingIntent) . You should also consider
setting up services within this method to handle any long polling or web requests. Because
 AppWidgetProvider is an extension of BroadcastReceiver , it may be shut down at any time.
By using the services within the onUpdate() method, you can avoid application crashes caused
by Application Not Responding (ANR) errors.

 Listing 7.2 shows a sample AppWidgetProvider class that could be used as a starting point for
working with an app widget.

 Listing 7.2 Sample AppWidgetProvider Class

 package com.dutsonpa.myappwidget;

 import android.appwidget.AppWidgetManager;
 import android.appwidget.AppWidgetProvider;
 import android.content.Context;
 import android.widget.RemoteViews;

 public class MyAppWidget extends AppWidgetProvider {

ptg16707593

95The AppWidgetProvider Class

 @Override
 public void onUpdate(Context context,

AppWidgetManager appWidgetManager, int[] appWidgetIds) {
 // Loop to make sure all widgets are updated
 final int N = appWidgetIds.length;
 for (int i = 0; i < N; i++) {

// add widget logic here
updateAppWidget(context, appWidgetManager, appWidgetIds[i]);

 }
 }

 @Override
 public void onEnabled(Context context) {
 // Code here will run on launch of app widget
 }

 @Override
 public void onDisabled(Context context) {
 // Code here will run when the last widget is disabled
 }

 static void updateAppWidget(Context context,
AppWidgetManager appWidgetManager,
int appWidgetId) {

 // Set widget text
 CharSequence widgetText = context.getString(R.string.appwidget_text);
 // App widgets use RemoteViews to manipulate widget view data
 RemoteViews views = new RemoteViews(context.getPackageName(),

R.layout.my_app_widget);
 views.setTextViewText(R.id.appwidget_text, widgetText);

 // Pass updates to the widget
 appWidgetManager.updateAppWidget(appWidgetId, views);
 }
 }

 The class file should feel familiar; it starts with the required imports, moves to the class declara-
tion, and extends AppWidgetProvider . You can then see that several methods have been set
up with comments to help guide you through each section.

 The onUpdate() method contains a for loop that identifies if more than one of your widgets
has been added to the user’s screen. By using the for loop, you can be sure that logic changes
and updates that should be executed will be, instead of only happening on one app widget.
Other logic, such as click events, services, and Intent handling, should happen here.

ptg16707593

96 Chapter 7 App Widgets

 The onEnabled() method is added so that if you need to set anything up for initialization, you
may do so here. Note that this is a run-once method, and after being called and executed, it
will not run again until all instances of the app widget are removed and one is added again.

 The onDisabled() method is added so that logic from either onUpdate() or onCreate() can
be executed to clean up any local variables, temp files, or databases.

 A method named updateAppWidget() is also created to pass updates to the widget. This
method will generally be called from onUpdate() . Remember that app widgets do not use
standard views, but use RemoveView s instead. This is why the updateAppWidget() method
uses them to change the text that is displayed in the widget.

 Tip

 The onAppWidgetOptionsChanged() method is used to change settings and options when-
ever the app widget is resized. You can get current information from the app widget by using
 getAppWidgetOptions() .

 Application Manifest Entries

 The final piece that takes an app widget from idea to implementation is to modify your appli-
cation manifest XML file. The modification consists of adding a <receiver> with an
<intent-filter> element and a <meta-data> element.

 The <receiver> should contain an android:name property with a value of your
 AppWidgetProvider class. A child <intent-filter> should then contain an <action> with a
property and value of android:name="android.appwidget.action.APPWIDGET_UPDATE" .

 A <meta-data> element should be added as a sibling to the <intent-filter> element. This
is a self-closing element, but it should contain the android:name="android.appwidget.
provider" and android:resource properties. The value of android:resource should be set
to the AppWidgetProviderInfo object XML file. As an example, if I had created an XML file
named my_app_widget_info.xml in the res/xml folder, the property would read as follows:

 android:resource="@xml/my_app_widget_info"

 The following shows an example of what would be added to your Application Manifest XML:

 <receiver android:name=".MyAppWidget" >
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>

 <meta-data
 android:name="android.appwidget.provider"
 android:resource="@xml/my_app_widget_info" />
 </receiver>

ptg16707593

97Summary

 Summary

 In this chapter, you learned about what app widgets are and the four basic steps involved in
creating one. You learned about how layouts work with app widgets and how you can create
two layouts that are used for the lock screen and home screen.

 You learned about creating an XML file that houses information that the app widget uses to
control interaction and meta information as an AppWidgetProviderInfo object. You also
learned about creating a class to control widget logic and where it is placed in your application.

 Finally, you learned how to modify your Application Manifest XML to contain the elements
needed for the app widget to receive Intents and how to tie together the class and object file
to relay resources between the app widget on the screen and the underlying logic that makes it
function how you want.

ptg16707593

This page intentionally left blank

ptg16707593

 8
 Application Design:

Using MVC

 Creating your first Android application exposes you to how an application is put together, but
it does not give you an understanding of how the application is wired together. Each piece of
the application works together to create an experience that transfers data between the user and
the device.

 This chapter introduces you to Model-View-Controller (MVC) architecture. This architecture
style meshes well with Android development, and you are shown how various Android compo-
nents fit this style of development. This includes working with asynchronous methods, threads,
tasks, content providers, and services.

 The MVC pattern has been used in software development for many years and is a clean archi-
tecture style that allows developers to separate business or application logic from display logic.

 The Model manages data and really only cares about the data’s integrity. The View is what is
shown to the user and serves as the interaction point at which a user can manipulate data. The
Controller is the glue that holds the system together; it allows for transport and accessibility
between the Model and the View. Figure 8.1 shows how this process works.

View
Presentation

Model
Data

Controller
Logic

Figure 8.1 A diagram of the Model-View-Controller architecture demonstrates how the logic,
data, and presentation layers work together.

ptg16707593

100 Chapter 8 Application Design: Using MVC

 Model

 The primary role of a Model is to contain and manage data. In Android development, a compo-
nent that acts like a Model is a content provider. A content provider not only allows you to
collect and create connections to data in your application, but it allows you to create a resource
that multiple applications can access.

 Access to content providers from other applications requires them to have permission to access
the data that will be returned. This allows users to be informed of what an application will
have access to, including content providers that you have created to share data.

 Some system content providers are available for use and will require you to specify permis-
sions for access in your application. If you do not plan on sharing your content provider with
any other applications, you do not need to worry about setting up extra permissions because
content providers will always have read and write access from the application in which they
originate.

 The data that is stored in a content provider is placed in a table (similar to a rational database
such as SQLite). This allows you to update, insert, and delete data in the content provider.

 Running an update, insert, or delete will require you to use one of the matching methods in
 ContentResolver .

 Here’s how to update data in a content provider:

 getContentResolver().update(Uri uri, ContentValues values, String where,
 String[] selectionArgs);

 Note that uri is the Uniform Resource Identifier (URI), which is used to define the location
of the content provider. The values are the new field values, with the key being the column
name. Be aware that passing a null will erase the data in the specified column. The where
value is a filter that mimics the functionality of an SQL WHERE statement. This allows you to
be specific with the data that should be updated. The selectionArgs are used as the binding
parameters for the selection or values . Depending on the update you are making, the value
passed for selectionArgs may be null .

 This method will return an int of the number of rows that were updated.

 Here’s how to insert data into a content provider:

 getContentResolver.insert(Uri url, ContentValues values);

 The value of url should be the URL that represents the table into which you are going to
insert data.

 The values passed through values should be the initial values that will be used when the new
row is created. The key used will be the column name, and passing a null value will create an
empty row.

 This method will return the URL of the newly created row.

ptg16707593

101View

 Here’s how to delete data from a content provider:

 getContentResolver.delete(Uri url, String where, String[] selectionArgs)

 Similar to the other methods, the url should be the URI of the table or content provider that
contains the row to be removed.

 The where should contain the values that help you make a specific selection. This is used the
same as a WHERE statement would work in SQL. After the method is run, it will return an int of
the number of rows that were deleted.

 Note

 When working with content providers, you may notice that the built-in content providers contain
a column name constant of _ID due to it being a requirement of Android SQLite. This is not
necessarily a required column; however, if you create your own content provider and want to
display the contents of it in a ListView , then you must have this column.

 View

 In MVC architecture, the View is exactly what it sounds like: the portion of the application that
the viewer views. The View is responsible for dealing with visual display and translating user
input into data that can be handled by the rest of the application.

 In Android development, this boils down to Views and Activities. These were covered in detail
in Chapter 5 , “Views,” so refer to that chapter for a refresher. To summarize, Activities are used
to manage a single set of events. This means that when an application is launched, the Activity
begins a lifecycle. This lifecycle is as follows:

1. The Activity is launched.

2. The onCreate() method is run.

3. The onStart() method is run.

4. The onResume() method is run.

5. The onPause() method runs when the user leaves the Activity, and onResume() is run
when the user returns to the Activity. This may include system dialogs.

6. The onStop() method is called when the Activity is no longer viewable to the user. If
the user returns, the onRestart() method will run before the application is reinstituted
into the lifecycle by calling onStart() again.

7. The onDestroy() method is called when the Activity has been determined by the system
to be closed down and has any resources reallocated back to the system.

 An Android view will contain the visible and intractable pieces that are shown to the user by
displaying widgets and custom views.

ptg16707593

102 Chapter 8 Application Design: Using MVC

 Through the addition of event listeners, such as onClick() , onLongClick() , and onKey() ,
information is allowed to pass between the presentation (the View of MVC) to the controller,
which ties the Model and View together.

 Controller

 As previously mentioned, the Controller is responsible for holding the system together by facil-
itating the exchange of data between the View and the Model.

 In Android development, the Controller can be thought of as the logic that is placed inside of
event handlers as well as services.

 A service is a component that can perform operations that are on going or that need to run
for extended periods of time. A service can continue to run even when the user switches to
another application; however, unless strictly specified, it is part of the application. This means
that when the application is destroyed, the service will also be terminated.

 An example of service behavior is starting media, such as an audio stream, and then changing
to the home screen or another application while the audio is still playing. You may also use a
service to fetch news, RSS feeds, or even stock listings.

 Services require registration in the application manifest XML file. This can be set as a
 <service> element with a name:

 <manifest>
 <!-- other manifest elements -->
 <application>
 <service android:name=".myService" />
 <!-- other manifest elements -->
 </application>
 <!-- other manifest elements -->
 </manifest>

 For security reasons, note that the <service> element does not contain an Intent filter. This
means that you will need to call this service explicitly.

 Services have two states: started and bound. Both states are similar in starting a service, but
different in how they handle data returns.

 In the started state, you call the startService() method to inform the system that you need
to have the service scheduled to start. The service will then be started and run to completion.
When finished, the service will self-terminate. In rare circumstances, it will return information
back to the application.

 To start a service through the startService() method, you can implement the following:

 Intent intent = newIntent(this, MyService.class);
 startService(intent);

ptg16707593

103Controller

 In the bound state, the service is connected to an application via the bindService() method.
This allows information to be passed from service to application and back. When you set a
service in this state, it will only be active as long as a component is actively connected to the
service. Should the connections to it stop, so will the bound service.

 To start a bound service, you can implement the following:

 Intent intent = new Intent(this, MyService.class);
 bindService(intent, myConnection, 0)

 The three arguments passed here are the Intent service, a ServiceConnection , and flags.
Depending on what you need your service to do, you may wish to pass different flag values.
Here are the possible values you can use:

■ BIND_AUTO_CREATE : Creates the service as long as the binding exists.

■ BIND_DEBUG_UNBIND : Saves the callstack from unbindService for viewing or printing.
This does cause a memory leak, however.

■ BIND_NOT_FOREGROUND : Stops the service from gaining a higher priority than the
application.

■ BIND_ABOVE_CLIENT : Used to inform the system that the service is more important than
the application.

■ BIND_ALLOW_OOM_MANAGEMENT : Allows the process used to manage the service to be
treated as a normal application, allowing restarts and candidacy for termination based on
the time it has been running.

■ BIND_WAIVE_PRIORITY : Allows the system to perform schedule and memory
management.

■ 0 : Used when you do not want to specify a value.

 Should you find that you need a service that can run indefinitely and be allowed to enable
application components to bind, you can use the onBind() callback method. When imple-
menting logic that uses the onBind() method, remember that you may want or need to use
the onUnbind() method.

 Services also have an onCreate() method that runs when the service first starts as well as an
 onDestroy() method that runs upon service termination.

 Note

 Application performance can be severely compromised if you are performing CPU-intensive oper-
ations on the main application thread. When using a service, make sure to start a new process
for the service. Failure to do so may end in an Application Not Responding (ANR) error.

ptg16707593

104 Chapter 8 Application Design: Using MVC

 Starting a service from an IntentService allows long-running services to be managed on a
separate thread from the main UI thread and should be strongly considered when creating
services to use with your application.

 Working Asynchronously

 When creating an application, there are times when you may want to perform an action
without interrupting application processing. This process is known as asynchronous processing
and is not limited to application development.

 Web developers have struggled against loading scripts and processes for years. In HTML5, the
addition of the async property to a <script> element allows scripts to be queued up and
requested without stopping the rendering of the web page.

 Android applications are visually run on one UI thread that is not thread-safe. This means that
you must do all visual updates on the UI thread, but it also means that you cannot use opera-
tions that slow down or interrupt the UI thread, such as network or Web API operations. If you
do manage to interrupt the thread, your application will stall and you may experience an ANR
error due to exceptions being thrown by the system.

 To get around the limitations of the UI thread, you can create worker threads. This still requires
a bit of finesse because you have to be careful not to create a process that is not thread-safe.
You can leverage three methods to help maintain thread-safe operations:

■ runOnUiThread(Runnable action) : Will queue the task to run on the UI thread. If the
task is already on the UI thread, it will run immediately.

■ post(Runnable action) : Adds the action to the message queue to be run on the UI
thread. Returns true if the action is successfully placed into the queue.

■ postDelayed(Runnable action, long delayMillis) : Adds the action to the message
queue, with the condition of waiting to run until the specified time has been reached.
Returns true if the action is successfully placed into queue.

 The following is an example of using the post() method to perform thread-safe work:

 new Thread(new Runnable() {
 public void run() {
 // create bitmap and retrieve from network
 final Bitmap bitmap =

loadNetworkImage("http://example.com/my-image.png");
 // Use .post() method on ImageView to place image
 myImageView.post(new Runnable() {

public void run() {
// When queue is reached, place image
myImageView.setImageBitmap(bitmap);

}

ptg16707593

105Working Asynchronously

 });
 }
 }).start();

 Depending on the work you are doing, you may also consider using AsyncTask . The
 AsyncTask will move processes from the main UI thread to a background process and return
results without interrupting the rendering process of the application.

 AsyncTask

 The AsyncTask should be used with regard to the name it bears. This means you have a some-
what simple or short task that needs to be done.

 Using AsyncTask requires you to set up a subclass with at least one method. Three parameter-
ized types are used with AsyncTask : Params , Progress , and Result . Should you not want to
use a particular argument, you may use Void .

 The following demonstrates a skeleton AsyncTask subclass with a method to run the
 AsyncTask :

 private class MyAsyncTask extends AsyncTask<String, Integer, String> {
 @Override
 protected String doInBackground(String... parameter) {
 // code to run in background as an AsyncTask
 }
 @Override
 protected void onProgressUpdate(Integer... progress){
 // code to run for update of AsyncTask
 }
 @Override
 protected void onPostExecute(String result) {
 // return data from AsyncTask as well as clean up
 }
 }

 // run the AsyncTask
 public void executeAsync(View view) {
 MyAsyncTask task = new MyAsyncTask();
 task.execute("String value passed to AsyncTask");
 }

 If the AsyncTask is set to update a progress indicator, the onProgressUpdate() method could
be used to pass information to update the indicator. The onPostExecute() method is used to
return data to a view, widget, or other component.

 Performing service-level operations with an AsyncTask opens up potential application and
memory problems. One such potential problem is that an AsyncTask does not recognize
configuration changes that cause Activities to be destroyed and re-created. That includes device

ptg16707593

106 Chapter 8 Application Design: Using MVC

orientation changes. If the AsyncTask happens to be in the middle of processing when the
screen is rotated, your progress is lost and an exception will be thrown.

 Getting past this issue requires keeping track of the AsyncTask instance by either imple-
menting setRetainInstance(true) or creating a fragment with logic to check whether the
 AsyncTask is running when the orientation is changed.

 Summary

 In this chapter, you learned about Model-View-Controller architecture and how it can be
applied to Android application development.

 You learned that content providers are similar to Models and that information can be accessed
between applications by using a content provider, but applications that do not wish to share
data may still use a content provider.

 You learned that Views and Activities make up the View component of MVC architecture and
that activities follow a lifecycle that helps developers understand when callback methods are
executed.

 You learned that services can make up the Controller component of MVC architecture. Services
are long-running components that do not strictly follow application lifecycles and are perfect
for keeping things running even when the application is paused.

 Finally, you learned about running processes asynchronously to avoid ANR errors and to
speed up your application. You learned methods to pass data to the UI thread in a thread-safe
manner, and you learned when you should use AsyncTask .

ptg16707593

 9
 Drawing and Animation

 Creating rich experiences in Android applications cannot be done with amazing code alone.
There must be visual allure—something that draws users in and gives their minds something to
play with for those moments between view changes, swipes, and loading events.

 This can be done with shapes, drawables, bitmaps, 3D graphics, and animation. This chapter
explains the classes, frameworks, and best practices to add visuals to your application.

 Graphics

 Whether you are displaying a bitmap or using OpenGL ES to create textures and shapes, there
are multiple ways to display visuals with Android. In this section, you learn about bitmaps,
drawables, and rendering with OpenGL ES.

 Bitmaps

 Bitmaps are collections of pixel information that contain data that can be used to construct an
image. Bitmaps are commonly used as icons and image assets in applications.

 The supported file types when working with Android include PNG, JPEG, and GIF. If at all
possible, you should avoid GIF files and use PNG files because the format will give you the best
features of GIF along with a rich color palette and alpha channels.

 To display an image in your application, you may want to start with an ImageView . An
 ImageView is a widget that is used specifically for displaying image content.

ptg16707593

108 Chapter 9 Drawing and Animation

 Warning

 You may want to use large bitmaps to increase the detail and presentation of image assets
used in your application. This may seem like a great idea, but you need to remember that
mobile devices are limited on the amount of memory available. An image snapped with a
device camera may come out to 5248×3936 (20 megapixels). To put this image into memory
with a bitmap configuration of ARGB_8888 will take almost 79MB of system memory. This will
immediately take up all available system memory and your application will crash, displaying an
 OutofMemoryError .

 To avoid potential application crashes due to a lack of memory, you can scale your images
before you load them. This can be done with an ImageView by setting the scaling type.

 Each scaling type will do something different with your image, and you will need to do as
much testing as possible to avoid aspect ratio and zooming issues.

 The available scale types are as follows:

■ CENTER (android:scaleType="center") : Even though this is a scale type, the image
will be centered with no scaling applied.

■ CENTER_CROP (android:scaleType="centerCrop") : This will scale while matching
the aspect ratio of the image to the maximum size of the parent container, but will cut
off any part of the image that does not fit.

■ CENTER_INSIDE (android:scaleType="centerInside") : This will scale while
matching the aspect ratio of the image to the maximum size of the parent container
while showing all of the image.

■ FIT_CENTER (android:scaleType="fitCenter") : Uses a matrix to resize the image to
fit while maintaining the aspect ratio and places the image in the center of the container.

■ FIT_END (android:scaleType="fitEnd") : Uses a matrix to resize the image to fit
while maintaining aspect ratio and aligning the image to the bottom-right corner of the
container.

■ FIT_START (android:scaleType="fitStart") : Uses a matrix to resize the image to
fit while maintaining the aspect ratio and aligning the image to the top-left corner of the
container.

■ FIT_XY (android:scaleType="fitXY") : Uses a matrix to scale the width and height
of the image independently to fit a container. Does not maintain the aspect ratio of the
image.

■ MATRIX (android:scaleType="matrix") : Uses a matrix to scale the image. Does not
maintain the aspect ratio when scaling to fit the container.

ptg16707593

109Graphics

 The following shows an example of an ImageView added to a layout XML file:

 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/skyline" />

 Figure 9.1 shows how these settings change the way a picture is displayed.

 Figure 9.1 The scaleType settings used in the top row, moving from left to right: none ,
 center , centerInside , fitEnd , and fitX . The settings used in the bottom row, moving from
left to right: matrix , centerCrop , fitCenter , and fitStart.

 NinePatch

 A NinePatch is an image made from a bitmap that is capable of being stretched when
displayed. The stretched areas of the image are made from repeating pixels and saved in PNG
format with a .9.png extension. Figure 9.2 shows what a NinePatch looks like.

 Figure 9.2 This NinePatch is used for the background and coloring of a button.

ptg16707593

110 Chapter 9 Drawing and Animation

 If you examine the NinePatch closely, you can see that there is 1 pixel of padding around the
main image and that there are black lines around the top, left, right, and bottom. These lines
define which areas of the NinePatch are repeatable that will be used as the stretchable area.

 NinePatch files do not have to be perfectly square; you can use rectangles, circles, and even
have some areas that contain an image or logo and will not be stretched. This allows you to
create custom buttons and backgrounds that match the theme of your application that are the
smallest size possible while working on as many different screens as possible.

 To create your own NinePatch file, you can use the Draw 9-patch tool (draw9patch) that is
included with the Android SDK. This tool can be launched from the sdk/tools directory via
the command-line or terminal where you downloaded and uncompressed or installed the
Android SDK.

 When you open the utility, it asks you for a file to work with. If you do not have a file, you
should either acquire or create one before proceeding.

 Once you select the image file that you want to work with, you are shown the image along
with information that will help you determine where the repeatable sections should be, along
with where they should not be repeated. This window should look similar to Figure 9.3 , which
shows the program open with an image that contains a slight gradient.

 Figure 9.3 The Draw 9-patch tool allows you to edit, preview what your NinePatch will look like,
and export .9.png files

 After you have adjusted the image to your liking, you can then save the image out by using the
File menu and selecting “Save 9-patch.” This will bring up a prompt of where you would like to
save your newly created NinePatch file.

ptg16707593

111Graphics

 You can now use your custom NinePatch in your application by placing it in the /res/
drawable/ folder of your project and referencing it in your layout XML file. The following
demonstrates using the custom NinePatch (named customninepatch.9.png) as the back-
ground for a button:

 <Button
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:background="@drawable/customninepatch" />

 Drawables

 The term drawable is a generic description of resources that can be drawn. Android has support
for many built-in drawable objects, as well as the ability to allow you to create your own.

 When something visual is rendered on the screen, this counts as a drawable. This explains why
graphical resources, such as PNG files, count as a drawable. It also gives reason to why image
assets are stored in the res/drawables directory of your project.

 Note

 Images placed in the res/drawable directory may be automatically optimized and replaced by
more memory-efficient versions. If you prefer to keep the exact file you put in, you should place
the drawable resource in the res/raw folder.

 Some drawables do not require a resource to be placed in the res/drawable directory. Instead,
you may be interested in using primitive shapes.

 Using a primitive shape will help with memory and also allow you to create visuals purely from
code. The following is an example of drawing a square shape in a custom view:

 // Create variable for ImageView
 ImageView myDrawnImageView;

 // populate the variable
 myDrawnImageView = (ImageView) this.findViewById(R.id.myDrawnImageView);

 // Need to get dimensions of the screen
 Display display = getWindowManager().getDefaultDisplay();
 Point size = new Point();
 display.getSize(size);
 int screen_width = size.x;
 int screen_height = size.y;

 // Create a bitmap
 Bitmap bitmap = Bitmap.createBitmap((int) screen_width, (int) screen_height,
 Bitmap.Config.ARGB_8888);

ptg16707593

112 Chapter 9 Drawing and Animation

 // Create a canvas and attach the bitmap
 Canvas canvas = new Canvas(bitmap);
 myDrawnImageView.setImageBitmap(bitmap);

 // use Paint() and drawRect() to draw a rectangle
 Paint p = new Paint();
 p.setColor(Color.BLUE);
 p.setStyle(Paint.Style.FILL_AND_STROKE);
 p.setStrokeWidth(40);
 float rectLeft = 80;
 float rectTop = 80;
 float rectRight = 200;
 float rectBottom = 200;
 canvas.drawRect(rectLeft, rectTop, rectRight, rectBottom, p);

 Note that in the previous snippet, both a stroke and fill are set. You do not have to set a stroke
if it will be the same color as the fill, but you will have to adjust the size of your drawable
to make up for the lost space that the stroke covered. Figure 9.4 shows the square that was
created.

 Figure 9.4 A blue square has been drawn using a bitmap, a canvas, and the drawRect()
method.

 Shapes can also be defined in XML by using the <shape> element. This is done by creating an
XML file and placing it in the res/drawable directory.

ptg16707593

113Graphics

 In the same manner as working with bitmaps, the asset will be identified by the name of the
XML file. If the file was named my_circle.xml , it would be referenced by my_circle .

 The following is an example of a custom shape defined in XML:

 <?xml version="1.0" encoding="utf-8"?>
 <shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="oval">
 <solid android:color="#FF00FF00"/>
 </shape>

 This shape will draw either a green oval or a circle. By defining the basic elements of the shape,
a View can reference this shape as the background and apply various constraints to show it as
either a circle or an oval.

 Figure 9.5 shows what the shape looks like when rendered as a background for a view with a
height and width of 50dp .

 Figure 9.5 With a rendering container that shares the same width and height, a small green
circle is rendered on the screen, even though the shape is defined as an oval.

 You can also use system drawables in your projects. These resources can, however, be a double-
edged sword. They enable you to match the system theme, allowing a user to quickly under-
stand what the icon or image means, but if used improperly, they confuse and destroy the trust
a user may have for your application.

ptg16707593

114 Chapter 9 Drawing and Animation

 Another issue you may run into is that because they are part of the system, they may change
from version to version. This means that you have no control over the past, present, or future
visual styles.

 Should you find that you still want to use these resources, visit http://androiddrawables.com/ .
Here, you will find a list of available resources and what they look like in various versions of
Android.

 OpenGL ES

 OpenGL for Embedded Systems (OpenGL ES) has been supported by Android from version
1.0 of the Android system. This, however, does not mean that every version of OpenGL ES is
compatible with every version of Android.

 As a quick reference, the following lists the version of OpenGL that can be used with various
Android versions:

■ OpenGL ES 1.0–1.1 supports Android 1.0+.

■ OpenGL ES 2.0 supports Android 2.2+.

■ OpenGL ES 3.0 supports Android 4.3+, provided the manufacturer has built in support
for the graphics pipeline.

■ OpenGL ES 3.1 supports Android 5.0+.

 Tip

 Due to breaking changes with OpenGL ES 1.4 and 2.0, you cannot mix and match the API calls
and usage. OpenGL ES 3.X is backward compatible with 2.0. This allows you to code for 3.0
and set your feature level to 2.0 and then use a runtime check to see if the device will support
3.0, allowing the use of the advanced 3.X features.

 To use OpenGL ES in your application without the APK, you first need to modify your applica-
tion manifest to add OpenGL ES as a feature. Depending on the version you plan on using, this
can be done as follows:

 <!-- to use version OpenGL ES 2.0 - Android 2.2+ -->
 <uses-feature android:glEsVersion="0x00020000" android:required="true" />

 <!-- to use version OpenGL ES 3.0 - Android 4.3+ -->
 <uses-feature android:glEsVersion="0x00030000" android:required="true" />

 <!-- to use version OpenGL ES 3.1 - Android 5.0+ -->
 <uses-feature android:glEsVersion="0x00030001" android:required="true" />

 While you are modifying your application manifest, if you plan on using texture compression,
you need to declare it in the manifest as well. Remember that not all texture compression types

http://androiddrawables.com/

ptg16707593

115Graphics

are compatible with all Android devices. By placing the type of compression used in the mani-
fest, you allow the Play store to filter out your application from devices that cannot support the
compression type.

 Now that you have your application manifest properly set up, you are ready to start using
OpenGL ES in your application. To do this you will want to work with the GLSurfaceView and
 GLSurfaceView.Renderer .

 In your Activity, you will want to start by creating the GLSurfaceView object and then setting
it as the primary view in the onCreate() callback method. After setting the GLSurfaceView
as the main view, you will also need to implement callback methods for the GLSurfaceView .
The following shows a minimal framework that could be used to set up a GLSurfaceView in an
application:

 // Create GLSurfaceView object
 private GLSurfaceView myGLSView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Set myGLSView to the MyGLSurfaceView class
 myGLSView = new MyGLSurfaceView(this);
 // Set the myGLSView as the main view for the activity
 setContentView(mGLSurfaceView);
 }

 @Override
 protected void onResume()
 {
 super.onResume();
 // set the onResume callback of the GLSurfaceView
 myGLSView.onResume();
 }

 @Override
 protected void onPause()
 {
 super.onPause();
 // set the onPause callback of the GLSurfaceView
 myGLSView.onPause();
 }

 In the previous example, the myGLSView object is set to an inner class. This allows you to set
the version of OpenGL ES that you want to use as well as to set up the renderer. The following
shows another minimal setup of that class:

ptg16707593

116 Chapter 9 Drawing and Animation

 class MyGLSurfaceView extends GLSurfaceView {

 private final MyGLRenderer myRenderer;

 public MyGLSurfaceView(Context context){
 super(context);

 // Set context to OpenGL ES 2.0
 setEGLContextClientVersion(2);

 // Set the renderer
 myRenderer = new MyGLRenderer();

 // Set the Renderer for drawing on the GLSurfaceView
 setRenderer(myRenderer);
 }

 }

 The renderer also points to another class to handle the initial setup and implementation of the
 onDrawFrame() and onSurfaceChanged() methods. This is shown as follows:

 public class MyGLRenderer implements GLSurfaceView.Renderer {

 public void onSurfaceCreated(GL10 unused, EGLConfig config) {
 // Set the background frame color
 GLES20.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 }

 public void onDrawFrame(GL10 unused) {
 // Redraw background color
 GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT);
 }

 public void onSurfaceChanged(GL10 unused, int width, int height) {
 GLES20.glViewport(0, 0, width, height);
 }
 }

 To then begin drawing shapes, you need to create a class for your shape, create the coordinates
of your shape, pass the coordinates by using a ByteBuffer , and then draw it out. An example
of creating a triangle follows:

 public void myTriangle() {

 private FloatBuffer vertexBuffer;

 // Set number of coordinates
 static final int COORDS_PER_VERTEX = 3;

ptg16707593

117Animation

 static float triangleCoords[] = {
10.0f, 200f, 0.0f,
10.0f, 100f, 0.0f,
100f, 100f, 0.0f

 };

 // Set color with red, green, blue and alpha (opacity) values
 float color[] = { 0.5f, 1.0f, 0.5f, 1.0f };

 public Triangle() {
// Set ByteBuffer for shape coordinates
ByteBuffer bb = ByteBuffer.allocateDirect(triangleCoords.length * 4);
// Set native byte order per device setting
bb.order(ByteOrder.nativeOrder());

// Set a floating point buffer from the ByteBuffer
vertexBuffer = bb.asFloatBuffer();
// add the coordinates to the vertexBuffer
vertexBuffer.put(triangleCoords);
// set the buffer to read the first coordinate
vertexBuffer.position(0);

 }
 }

 Beyond drawing shapes, you will want to study the official docs for working with OpenGL ES
at https://www.khronos.org/opengles/ . This will give you the specifications for the available
versions of OpenGL ES as well as online reference manuals and cards.

 For those looking for a “bare-metal” approach to using OpenGL ES, you can use the Native
Development Kit (NDK), which you may also want to use for calculation-intensive operations,
including writing RenderScript.

 Animation

 If you are not using a 2D- or 3D-rendering engine for your application, you can still add some
eye candy and visual splendor to it by using view and property animations.

 View Animation

 A view animation is used when you have two views and would like to animate between them.
Those with animation experience know that when a transition is built between one view and
another, there are many in-between (or tween) frames that must be drawn to smoothly show
the change between one view and another.

https://www.khronos.org/opengles/

ptg16707593

118 Chapter 9 Drawing and Animation

 Note that even if you are not building a transition, the tween frames are still needed to animate
a single view with changes such as scale, rotation, and translation. The view animation does all
the math, calculation, and drawing for you to handle smoothly animating changes to views.

 To create a view animation, either you can use an XML file that contains the details of
the animation and is stored in the /res/anim directory of your project or you can use the
 AnimationSet and Animator classes to define an animation with Java.

 To define an animation in XML, you need to define a <set> element that will contain sub-
elements to start defining an animation.

 There are four basic animation effects you can use:

■ alpha : Controls the opacity or visibility

■ rotate : Controls the degree of rotation

■ scale : Controls size

■ translate : Controls the placement in both the X and Y planes

 Each of these animation basics can be used in the animation XML. The following demonstrates
a sample animation XML:

 <scale
 android:interpolator="@android:anim/accelerate_decelerate_interpolator"
 android:fromXScale="1.0"
 android:toXScale="1.5"
 android:fromYScale="1.0"
 android:toYScale="0.5"
 android:pivotX="50%"
 android:pivotY="50%"
 android:fillAfter="false"
 android:duration="800" />

 The <scale> element designates that this animation will scale what it is used with. The prop-
erties listed are how the scale is controlled. It is worth noting that the easing of the effect is
controlled by an interpolator. This is set with android:interpolator with many different
values that can be used. A list of subclasses that can be used can be found at http://developer.
android.com/reference/android/view/animation/BaseInterpolator.html .

 If you want to perform more than one animation, you may use a <set> element and even nest
more <set> elements to run animations in sequence or at the same time.

 For a complete list of the properties that can be used with view animation, visit
http://developer.android.com/guide/topics/resources/animation-resource.html .

 Property Animation

 View animation is great for working with specific animations and views, but not everything
that you may want to animate is a view or is one of the four basic animations.

http://developer.android.com/reference/android/view/animation/BaseInterpolator.html
http://developer.android.com/reference/android/view/animation/BaseInterpolator.html
http://developer.android.com/guide/topics/resources/animation-resource.html

ptg16707593

119Animation

 Property animation allows you to animate properties of any object, including views. This opens
up new options because you may not have thought about animating properties such as text
and background color.

 Similar to using a view animation, you can use XML to define a property animation. Property
animation XML files can contain <set> elements as well as <objectAnimator> and
<valueAnimator> elements to control the animations. Unlike a view animation XML, property
animation XML files should be placed in the res/animator directory of your project.

 The following shows an example of a property animation XML file:

 <set android:ordering="sequentially">
 <set>
 <objectAnimator

android:propertyName="x"
android:duration="600"
android:valueTo="500"
android:valueType="intType"/>

 <objectAnimator
android:propertyName="y"
android:duration="600"
android:valueTo="350"
android:valueType="intType"/>

 </set>
 <objectAnimator
 android:propertyName="alpha"
 android:duration="800"
 android:valueTo="1f"/>
 </set>

 In similarity to view animation XML files, the <set> element can be used to control when
and if animations will run together or separately. In this example, there is a containing <set>
element with a property of android:ordering="sequentially" that informs the system to
start at the top and run through any child <set> elements before running the next animation.

 To call the animation that was defined in XML, you need to inflate the XML into an
 AnimatorSet object as well as use the setTarget() method to attach the animation to a
target. This can be done as follows:

 AnimatorSet aniSet = (AnimatorSet) AnimatorInflater.loadAnimator(myContext,
R.anim.property_animator);

 aniSet.setTarget(myObject);
 aniSet.start();

 Note that R.anim.property_animator is used to load the XML file even though it is stored
in the res/animator directory. This is normal behavior and has more to do with the layout
editor for the legacy Eclipse ADT plugin, which only checks the res/animator folder for
resources.

ptg16707593

120 Chapter 9 Drawing and Animation

 Due to the extra control and complexity of using a property animation, more set up is required
to create animations than using a view animation. Three subclasses extend the Animator class
that you will be using to adjust and create property animations:

■ ValueAnimator : This subclass handles the calculation for values used in the animation.

■ ObjectAnimator : This is actually a subclass of ValueAnimator that is used to target an
object with an animation value.

■ AnimatorSet : This is used to create sets of animations that relate to each other.

 ValueAnimator

 The ValueAnimator allows you to change the values of an object. This is done by setting a
beginning and ending value, a duration (in milliseconds), and then starting the animation.

 Note that because ValueAnimator cannot change an object or property directly, you must
implement ValueAnimator.AnimatorUpdateListener .

 The following demonstrates setting up a ValueAnimator :

 // set up a beginning and ending value
 ValueAnimator animation = ValueAnimator.ofInt(1,20);

 // set duration of animation to 1.5 seconds
 animation.setDuration(1500);

 // begin animation
 animation.start();

 Instead of calling animation.start() , you may instead want to perform an animated value
change based on the current event of an animation.

 To do this, use one of the animation event listeners:

■ onAnimationStart() : Runs on animation start.

■ onAnimationRepeat() : Runs when an animation is repeated.

■ onAnimationCancel() : Runs when an animation is stopped or cancelled.

■ onAnimationEnd() : Runs at the end of an animation regardless of how it was ended.
This is also called when onAnimationCancel() is called.

 ObjectAnimator

 Whereas the ValueAnimator could not be directly called on an object, the ObjectAnimator
allows you to target an object property. The following shows how to use an ObjectAnimator :

ptg16707593

121Animation

 // Target myObject for an alpha animation
 ObjectAnimator oAnimation = ObjectAnimator.ofFloat(myObject, "alpha", 0f);

 // Set the duration to 1.5 seconds
 oAnimation.setDuration(1500);

 // Start the animation
 oAnimation.start();

 As commented, the object myObject has been targeted to have the alpha property adjusted to
 0 (not visible) over a duration of 1.5 seconds when the animation starts.

 AnimatorSet
 Animations can be combined to have multiple properties changed at the same time, start
running at the same time, or run in a specific sequence by using an AnimatorSet .

 The following shows several animations created with ObjectAnimator that will be added to a
set and executed in order:

 // Change alpha and set to 1.5 second duration
 ObjectAnimator fadeOut = ObjectAnimator.ofFloat(myObj, "alpha", 0f);
 fadeOut.setDuration(1500);

 // Change the position of the object with 1.5 second duration
 ObjectAnimator transX = ObjectAnimator.ofFloat(myObj, "translationX", -300f,
 0f);
 transX.setDuration(1500);

 // Change alpha from 0 to 1 with a 1.5 second duration
 ObjectAnimator fadeIn = ObjectAnimator.ofFloat(myObj, "alpha", 0f, 1f);
 fadeIn.setDuration(1500);

 // create AnimatorSet
 AnimatorSet animatorSet = new AnimatorSet();

 // fadeOut first, then run fadeIn and transX
 animatorSet.play(fadeIn).with(transX).after(fadeOut);

 // start the animation sequence
 animatorSet.start();

 By using the play() , with() , and after() methods, you can control when animations in an
 AnimatorSet will run. The animation used in the after() method will run first and the other
methods will run when it completes.

ptg16707593

122 Chapter 9 Drawing and Animation

 Drawable Animation

 The last type of animation you may wish to use is a drawable animation. The best way to think
of this is like creating a flipbook, or even an animated GIF.

 A drawable animation is composed of a list of drawables that will be played frame by frame.
These resources are grouped in an <animation-list> element in an XML file that is stored in
the /res/drawable directory of your project. The following shows an example of an XML file:

 <animation-list xmlns:android="http://schemas.android.com/apk/res/android"
 android:oneshot="false">
 <item android:drawable="@drawable/andy_run1" android:duration="200" />
 <item android:drawable="@drawable/andy_run2" android:duration="200" />
 <item android:drawable="@drawable/andy_run3" android:duration="200" />
 <item android:drawable="@drawable/andy_run4" android:duration="200" />
 <item android:drawable="@drawable/andy_run5" android:duration="200" />
 </animation-list>

 Note the use of android:oneshot="false" . This means that the animation will continually
run from start to end. Should you decide that you would only like to run the animation one
time, you can change the value from false to true .

 The XML file is then referenced from your code during the onCreate() method. You can then
invoke the animation in a variety of ways, including using an onTouchEvent :

 // set up the animation for use
 ImageView andyImage = (ImageView) findViewById(R.id.andy_image);
 andyImage.setBackgroundResource(R.drawable.andy_running);
 andyAnimation = (AnimationDrawable) andyImage.getBackground();

 // ...

 public boolean onTouchEvent(MotionEvent event) {
 if (event.getAction() == MotionEvent.ACTION_DOWN) {
 andyAnimation.start();
 return true;
 }
 return super.onTouchEvent(event);
 }

 Tip

 Some animations may need to use many bitmaps in order to appear smooth and buttery. This
means that you need to take care in choosing the animation you would like to perform and
strike a balance between file size and how smooth the animation appears. This is especially
important when working with animations on wearable devices.

ptg16707593

123Animation

 Transition Framework

 The transition framework was added in Android 4.4 and allows developers to create scenes that
can then be transitioned. This is useful when you have two different view hierarchies that you
want to change between.

 This will be accomplished by using the starting and ending layouts as scenes and then applying
a transition to them that is controlled with a TransitionManager .

 Warning

 Views that contain AdapterView or ListView are not compatible with the transition frame-
work. Attempting to use one anyway may result in an unresponsive UI.

 Because there are going to be two scenes, I define these in XML. First, the contents of /res/
layout/scene_a.xml :

 <?xml version="1.0" encoding="utf-8"?>
 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/scene_container"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="TextView 1"
 android:id="@+id/textView"
 android:layout_alignParentTop="true"
 android:layout_alignParentStart="true" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="TextView 2"
 android:id="@+id/textView2"
 android:layout_alignParentTop="true"
 android:layout_alignParentEnd="true" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Go!"
 android:id="@+id/button"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true" />

 </RelativeLayout>

ptg16707593

124 Chapter 9 Drawing and Animation

 The contents of /res/layout/scene_b.xml :

 <?xml version="1.0" encoding="utf-8"?>
 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/scene_container"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="TextView 2"
 android:id="@+id/textView2"
 android:layout_alignParentTop="true"
 android:layout_alignParentStart="true" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="TextView 1"
 android:id="@+id/textView"
 android:layout_alignParentTop="true"
 android:layout_alignParentEnd="true" />

 </RelativeLayout>

 Rather than using three different layout XML files, I instead give the RelativeLayout an ID
of scene_container to signify that this is the containing element that will contain the transi-
tioned scenes. It is important that the ID is set because it is used to initially set the scene.

 The following demonstrates the code needed to set the scenes and transition to them:

 Scene mySceneA;
 Scene mySceneB;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.scene_a);

 RelativeLayout mySceneRoot = (RelativeLayout)findViewById(R.id.scene_container);
 mySceneA = Scene.getSceneForLayout(mySceneRoot, R.layout.scene_a, this);
 mySceneB = Scene.getSceneForLayout(mySceneRoot, R.layout.scene_b, this);

 Button button = (Button)findViewById(R.id.button);
 button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {

ptg16707593

125Summary

TransitionManager.go(mySceneB);
 }
 });
 }

 When this code is run, the default transition will execute. This may vary per the version of
Android used, but generally this equates to a fade-out, then fade-in transition.

 If you want to specify a transition yourself, you can either create a transition in XML or it can
be invoked by using a particular subclass such as Fade() .

 By using a transitionSet in a transition XML file, you can apply multiple transitions.
The following is an example of a transition XML file that resides at res/transitions/
transition_fader.xml in your project:

 <transitionSet xmlns:android="http://schemas.android.com/apk/res/android"
 android:transitionOrdering="sequential">
 <fade android:fadingMode="fade_out" />
 <changeBounds />
 <fade android:fadingMode="fade_in" />
 </transitionSet>

 This transition will run sequentially (thanks to the android:transitionOrdering=
"sequential" setting) and fade elements out, apply property changes, and then fade the
elements back in.

 If you decide to use an XML file for your transition, you will need to inflate it into your code.
This can be done as follows:

 Transition myTransitionFader = TransitionInflater.from(this)
 .inflateTransition(R.transition.transition_fader)

 Now that the scenes and transition have been defined, you can kick the transition off by
running the following:

 TransitionManager.go(mySceneB, myTransitionFader);

 Summary

 In this chapter, you learned about the tools, utilities, and frameworks that can be leveraged to
add visuals to your application that will deliver the interface magic that unites the data and
presentation of your application.

 Starting out with bitmaps, you learned that you can use PNG, JPEG, and GIF images in your
application. You also learned how these can be displayed in an ImageView .

ptg16707593

126 Chapter 9 Drawing and Animation

 You learned about NinePatches and how they can be small image resource files that can be
used for backgrounds and contain repeatable sections that will stretch. Using the draw9patch
tool in the sdk/tools directory brings up an application that can be used to import and adjust
NinePatches.

 You also learned about drawables, including using ones that come bundled in each version of
Android. You learned that images that are placed into the res/drawables folder may be opti-
mized and come out at a different quality level. You also learned that by using drawables and a
canvas, you can create 2D objects with primitive shapes.

 You then learned a little about using OpenGL ES and the versions that are compatible with
each version of Android. You were given an example of creating a GLSurfaceView to render
the visuals on and how to set some properties.

 Finally, you were shown how animations work, including how to animate views, properties,
and drawables. You were also shown how the transition framework could be used to do the
calculations and display the changing from one scene to another.

ptg16707593

 10
 Networking

 Networking in Android has been an area that has steadily improved with each release of
Android. Whereas network connections were once created and executed no matter what,
through the use of the Volley library, they can now be queued to send, process, and even be
canceled. In this chapter, you will learn about connecting to the Internet through an HTTP
client, how to work with XML, and why using AsyncTask for network communication is
necessary for your application, and how you can start using Volley.

 Accessing the Internet

 Unless your application is completely standalone, you will probably need to connect to the
Internet. Saving information, accessing data feeds, or even getting updated files will require you
to access the Internet.

 To connect to the Internet, your application manifest will require the following permissions:

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

 The INTERNET permission is used to allow your application to make outbound requests to the
Internet. The ACCESS_NETWORK_STATE permission is used to allow access to either the radio or
the Wi-Fi adapter on your device.

 It is also important to remember that network activity must occur in a separate thread than the
main or UI thread. Any attempt to perform network operations on the main thread causes a
runtime exception or an Application Not Responding error.

 Network Detection

 An important aspect of using the networking features of Android is making sure that you
actually have a connection before attempting to use it. Being able to detect when you have a
connection is also useful for queuing data until a connection becomes available.

ptg16707593

128 Chapter 10 Networking

 Checking for a connection involves getting a ConnectivityManager and then using the
 getActiveNetworkInfo() method and subsequently the isConnected() method on the
active network. Listing 10.1 shows sample code from an Activity that demonstrates how this
is done.

 Listing 10.1 Checking Network Status

 public void onClick(View view) {

 ConnectivityManager connMgr = (ConnectivityManager)
getSystemService(Context.CONNECTIVITY_SERVICE);

 NetworkInfo networkInfo = connMgr.getActiveNetworkInfo();
 if(networkInfo != null && networkInfo.isConnected()) {

Toast connectedToast = Toast.makeText(getApplicationContext(),
"Network connected!", Toast.LENGTH_SHORT);

connectedToast.show();
 } else {

Toast disconnectedToast = Toast.makeText(getApplicationContext(),
"No network connection!", Toast.LENGTH_SHORT);

disconnectedToast.show();
 }

 }

 In the previous sample, an onClick() method is used to trigger a check for the connection
state. The connMgr is created and used in conjunction with networkInfo to retrieve the
current status of the network. If networkInfo is not empty and the network is connected, a
toast will appear onscreen informing the user that the network is connected. Consequently, if
 networkInfo is empty or does not return true for isConnected() , then a toast will appear on
the device with a message of “No network connection.”

 Note that either a Wi-Fi or mobile data connection will trigger isConnected() to return true .
For testing purposes, you should be able to use airplane mode to disable any network connec-
tions, allowing you to test your application without a network connection. If you would like
to specifically check for either Wi-Fi or mobile data, you will need to specify the type when
getting networkInfo .

 To check for Wi-Fi, use the following snippet:

 NetworkInfo networkInfo = connMgr.getNetworkInfo(ConnectivityManager.TYPE_WIFI);

 Checking for a mobile data connection would change the snippet to be as follows:

 NetworkInfo networkInfo = connMgr.getNetworkInfo(ConnectivityManager.TYPE_MOBILE);

 Figure 10.1 shows an application running this code and the toast messages that appear when a
button is pressed.

ptg16707593

129Accessing the Internet

 Figure 10.1 The network is connected for the phone on the left. The phone on the right,
however, does not have a network connection.

 Using an HTTP Client

 Developers who have been with Android since the beginning are probably familiar with using
both the HttpURLConnection and Apache HttpConnection HTTP clients. As it stands now,
Google recommends the use of the HttpURLConnection client for any new applications that
are targeted at Gingerbread (Android 2.3, API level 10) and up.

 When using an HTTP client, you will start by creating the client, preparing the request,
handling the return, and making sure to close the connection. Closing the request is important
so that device resources can be released and used again.

 Listing 10.2 demonstrates the code needed to create and release an HTTP connection using
 HttpURLConnection .

 Listing 10.2 Creating and Closing an HTTP Connection

 URL url = new URL("http://www.google.com/");
 HttpURLConnection urlConnection = (HttpURLConnection) url.openConnection();
 try {
 // save the response to an InputStream
 InputStream in = new BufferedInputStream(urlConnection.getInputStream());
 // parse the response
 parseStream(in);
 } finally {
 // release the connection
 urlConnection.disconnect();
 }

ptg16707593

130 Chapter 10 Networking

 Note that this example shows the basic method for creating and closing a connection but will
require you to create your own method for parsing the response.

 Working with a secure or HTTPS connection is the same. When this is the case, an
 HttpsURLConnection will be returned.

 With each release of Android, new trusted Certificate Authorities are added; this means that
if you are attempting to connect to a site that has a certificate signed by a trusted CA, your
connection will be fine. Should you run into a handshake error, you will need to add the
connection to your application as a trusted resource. See https://developer.android.com/
training/articles/security-ssl.html for more information.

 When using an HTTP client, information not only can be read from a connection, but informa-
tion can also be posted through the connection. The process of posting information is similar
to getting information. A connection is created, the connection is set to send data, data is sent,
and then the connection is closed. Listing 10.3 demonstrates how this is achieved.

 Listing 10.3 Creating a Connection that Will Post Data

 // create the connection
 HttpURLConnection urlConnection = (HttpURLConnection) url.openConnection();
 try {
 // I am going to push, so setDoOutput should be true
 urlConnection.setDoOutput(true);
 // I do not know the exact size of the response body
 urlConnection.setChunkedStreamingMode(0);

 // create the response body
 OutputStream out = new BufferedOutputStream(urlConnection.getOutputStream());
 // use a function to send information through the connection
 writeStream(out);

 // save the response to an InputStream
 InputStream in = new BufferedInputStream(urlConnection.getInputStream());
 // parse the response
 parseStream(in);
 } finally {
 // close the connection
 urlConnection.disconnect();
 }

 Now that you have seen how to get and send data with an HTTP client, it is time to learn about
using XML.

https://developer.android.com/training/articles/security-ssl.html
https://developer.android.com/training/articles/security-ssl.html

ptg16707593

131Parsing XML

 Parsing XML

 XML remains a popular choice for data delivery. Whether the data is for creating pins on a map
or a data feed for updated content on a website, there is a fairly good chance that you will end
up dealing with XML.

 To get started parsing XML, you need to do the following:

1. Decide what elements that you will be using.

2. Instantiate your parser.

1. Read the XML feed.

4. Parse the results.

5. Consume the XML.

 Deciding what elements to use should be part of your application architecture. You should
have a good idea of what the XML structure is, and which elements you are interested in
dealing with. If you have a feed with elements that you are not interested in using, you can
skip these elements during your parsing procedure.

 Google currently recommends using XmlPullParser when working with XML. The following
snippets show the instantiation of the parser:

 XmlPullParser parser = Xml.newPullParser();

 Note that you can decide to ignore parsing namespaces by setting FEATURE_PROCESS_
NAMESPACE to false . The following shows how this is done through the use of the
setFeature() method:

 parser.setFeature(XmlPullParser.FEATURE_PROCESS_NAMESPACES, false);

 As you parse the XML data, you will want to create functions to read each element that you
need. This is helpful because each tag may contain different types of data, and it allows you to
handle the data in the manner of your choosing. Listing 10.4 demonstrates using two functions
to find the element you want and then read the text value from the element.

 Listing 10.4 Getting a Text Value from an XML Element

 private String readFirstName(XmlPullParser parser) throws IOException,
 XmlPullParserException {
 parser.require(XmlPullParser.START_TAG, ns, "firstname");
 String firstName = readText(parser);
 parser.require(XmlPullParser.END_TAG, ns, "firstname");
 return firstName;
 }

ptg16707593

132 Chapter 10 Networking

 private String readText(XmlPullParser parser) throws IOException,
XmlPullParserException {
 String textValue = "";
 if (parser.next() == XmlPullParser.TEXT) {
 textValue = parser.getText();
 parser.nextTag();
 }
 return textValue;
 }

 Looking at Listing 10.4 , you can see the require() method is initially used to define the start
tag that is searched for in the parsed XML file; in this case, it will look for <firstname> . When
that tag is found, a string named firstName is set to the returned value of the readText()
function.

 To retrieve the text from inside of the <firstname> element, the readText() function creates
an empty string and then parses the element for text. If text is found, the string will be popu-
lated; otherwise, the function will return the empty string.

 If you wanted to parse the value of a specific property, this can be done by using the
 getAttributeValue(String namespace, String name) method of XmlPullParser , like so:

 String altPropertyValue = parser.getAttributeValue(null, "alt");

 When you need to parse tags that are nested, use a method that allows you to skip tags. This is
important to make sure that you get the data you want. Listing 10.5 shows a skip function that
you may find useful.

 Listing 10.5 A Skip Function for Parsing Nested XML Elements

 private void skip(XmlPullParser parser) throws XmlPullParserException,
 IOException {
 // if the current event does not match the start tag, throw exception
 if (parser.getEventType() != XmlPullParser.START_TAG) {
 throw new IllegalStateException();
 }
 // create a counter to keep track of depth
 int depth = 1;
 // use while loop to find the end of the element
 while (depth != 0) {
 // use switch to move through nested elements
 switch (parser.next()) {

case XmlPullParser.END_TAG:
depth--;
break;
case XmlPullParser.START_TAG:
depth++;

ptg16707593

133Handling Network Operations Asynchronously

break;
 }
 }
 }

 Because the counter, or depth , is set to 1 , the switch will be triggered based on the type of
event or element encountered. The while loop is used to keep the processing going until the
value of depth is set to 0 , which is the closing element.

 Consuming XML will vary based on your application and needs; however, this will generally
consist of the previous steps combined with an AsyncTask to make the data request, save the
output to a stream, and then process the stream to pull the values you need.

 Using an AsyncTask is paramount to application success and to avoid working on the main
UI thread. In the next section, you learn why this is needed and how to create and work with
 AsyncTask .

 Handling Network Operations Asynchronously

 Users expect applications to run on their devices as fast as possible. This includes any lag, jank,
or stuttering that your application may perform on the user interface (UI) level. It should not
come as a surprise that, by default, the Android system prohibits certain activities and process-
ing from happening on the main UI thread. This is solved, however, by using AsyncTask for
various logic handling.

 In the case of network handling, you should be using AsyncTask to offload your communica-
tion and processing logic. Remember that you should also inform the user that a network event
has started; otherwise, you may end up with a user creating multiple connections or operations
while waiting for the first request to return.

 For your application, you may find it useful to determine if the URL you are requesting is avail-
able or if it is currently experiencing an error. By using the getResponseCode() method, you
can determine the status of the server you are connecting to. Listing 10.6 demonstrates this in
action.

 Listing 10.6 Using getResponseCode() to Determine Server Status

 private class CheckUrlTask extends AsyncTask<String, Void, String> {
 @Override
 protected String doInBackground(String... urls) {
 try {

return urlResponse(urls[0]);
 } catch (IOException e) {

return "Unable to retrieve web page. URL may be invalid.";
 }
 }

ptg16707593

134 Chapter 10 Networking

 // onPostExecute displays the results of the AsyncTask.
 @Override
 protected void onPostExecute(String result) {
 Toast responseToast = Toast.makeText(getApplicationContext(),

"URL responded with "+result, Toast.LENGTH_SHORT);
 responseToast.show();
 }
 }

 private String urlResponse(String checkUrl) throws IOException {
 InputStream is = null;

 try {
 URL url = new URL(checkUrl);
 HttpURLConnection conn = (HttpURLConnection) url.openConnection();
 conn.setReadTimeout(10000 /* milliseconds */);
 conn.setConnectTimeout(15000 /* milliseconds */);
 conn.setRequestMethod("GET");
 conn.setDoInput(true);
 // Attempt connection
 conn.connect();
 int response = conn.getResponseCode();

 Log.d(DEBUG_TAG, "The response is: " + response);
 is = conn.getInputStream();

 return String.valueOf(response);

 // Close the InputStream
 } finally {
 if (is != null) {

is.close();
 }
 }
 }

 The CheckUrlTask class extends AsyncTask , allowing it to run separately from the UI thread.
This helps keep applications responsive and protects the application from crashing in case of
any network lag or delay. In fact, without specifically ordering your application to run network
tasks on the UI thread, you will receive a NetworkOnMainThread error when your applica-
tion runs. When CheckUrlTask() runs, it attempts to load the URL passed to it, and by using
 onPostExecute() , it displays a toast with the results returned from the urlResponse()
method.

 The urlResponse() method creates an InputStream that is used to contain the value of an
HTTP request made to a remote server.

ptg16707593

135Volley

 Another way to deal with network connections, including queuing and canceling, is to
use Volley.

 Volley

 Volley is an HTTP library that is useful to developers who want to build scheduling and
management into their network connections. Volley is particularly useful for fetching items to
update widgets, return search results, or even as a network resource cache. The Volley library is
available for download from the Android Open Source Project at https://android.googlesource.
com/platform/frameworks/volley . To get started using Volley, you will need to find a compiled
 volley.jar file, clone the repository, and import the clone as a library project, or you will
need to run the build scripts to make your own volley.jar file.

 To clone the repository with Git, run the following command:

 git clone https://android.googlesource.com/platform/frameworks/volley

 After you have cloned the repository, open a terminal window and move into the folder and
run the following build script (note that you must have Apache Ant installed in order for the
build to work):

 android update project -p .
 ant jar

 If running ant in your terminal does not work, make sure you have added the bin folder of Ant
to your system path or environment variables.

 When the build script is complete, you should have a volley.jar file that you can use in your
Android project. Depending on the IDE you are using, this may be as simple as copying the file
into your libs folder, or you may have to copy it as well as right-click the .jar file and choose
Add as Library, and then perform a clean/build of your application.

 Once the jar or library project has been added to your application, make sure you have added
the android.permission.INTERNET to your application manifest.

 Because Volley was created to make things easier for developers, several convenience methods
have been built to help you perform otherwise manual tasks. To demonstrate this, instead of
having to manually create a queue to handle network requests, you can use the following:

 RequestQueue queue = Volley.newRequestQueue(this);

 This creates a queue that can then be used to process requests that have been added. To add a
request, you need to create one and then use the .add() method on your queue object. The
following demonstrates how this is done:

 String url = "http://developer.android.com/";
 StringRequest stringRequest = new StringRequest(Request.Method.GET, url,
 new Response.Listener() {

@Override

https://android.googlesource.com/platform/frameworks/volley
https://android.googlesource.com/platform/frameworks/volley
https://android.googlesource.com/platform/frameworks/volley

ptg16707593

136 Chapter 10 Networking

public void onResponse(String response) {
// the server responded, handle response here

}
 }, new Response.ErrorListener() {

@Override
public void onErrorResponse(VolleyError error) {

// add error message here
}

 });
 queue.add(stringRequest);

 Multiple requests can be built and will then be handled by worker threads in the background.
Results are delivered to the main UI thread, allowing you to update controls and widgets.
Requests that require data may be updated by data that is in the cache, thus speeding up
processes and saving on network trips.

 Another benefit of using Volley is that you can stop requests in the queue should you no
longer need them. To stop requests, tag them to the Activity that calls them. This can be done
as follows:

 public static final String TAG = "DataRequestTag";
 StringRequest stringRequest;
 RequestQueue queue;

 // Tag the request
 stringRequest.setTag(TAG);

 // Queue the request
 queue.add(stringRequest);

 Now that the requests have been tagged, you can cancel them from processing from the
 onStop() method of your Activity:

 @Override
 protected void onStop () {
 super.onStop();
 if (queue != null) {

queue.cancelAll(TAG);
 }
 }

 So far, we have covered using a stringRequest , but a few other requests are built into Volley.
You can also make an ImageRequest , JsonObjectRequest , and JsonArrayRequest .

 When making an ImageRequest , you need to have an ImageView to place your image as
well as the URL where the image lives. Once you have these, you can make the request. An
 ImageRequest may look like the following:

ptg16707593

137Volley

 ImageRequest request = new ImageRequest(url,
 new Response.Listener() {

@Override
public void onResponse(Bitmap bitmap) {
// set the image
mImageView.setImageBitmap(bitmap);

}
 }, 0, 0, null,
 new Response.ErrorListener() {

public void onErrorResponse(VolleyError error) {
// handle the error with error resource
mImageView.setImageResource(R.drawable.image_load_error);

}
 });

 You may have noticed that this example is missing the add() method. This is because you may
want to work with a singleton class when using images. If you need an example of setting up
a singleton, you can find one at https://developer.android.com/training/volley/requestqueue.
html#singleton .

 After adding the class, you can then queue the imageRequest , as follows:

 MySingleton.getInstance(this).addToRequestQueue(request);

 To work with a JSON array or object, you should either use JsonArrayRequest or
 JsonObjectRequest , respectively. The following demonstrates working with a JSON object:

 JsonObjectRequest jsonObjRequest = new JsonObjectRequest
(Request.Method.GET, url, null, new Response.Listener() {

 @Override
 public void onResponse(JSONObject response) {
 // handle the response
 }
 }, new Response.ErrorListener() {

 @Override
 public void onErrorResponse(VolleyError error) {

// handle the error
 }
 });

 Working with JSON data may also require the use of the singleton class, making use of the
queue, similar to how the imageRequest was performed:

 MySingleton.getInstance(this).addToRequestQueue(jsonObjRequest);

https://developer.android.com/training/volley/requestqueue.html#singleton
https://developer.android.com/training/volley/requestqueue.html#singleton

ptg16707593

138 Chapter 10 Networking

 Summary

 In this chapter, you learned about using an HTTP client and how to connect and send data.
You also learned how to parse through XML files for data, and that using a skip method can
help you return the data you want. You also learned why AsyncTask s are used when working
with network functions. Lastly, you learned that, by using the Volley library, you can gain finer
control over your network connections and requests.

ptg16707593

 11
 Working with Location Data

 Many applications may benefit from adding support or processing location data. There are
many examples of how location can be used and why it is important. In this chapter, you learn
ways to access and use user location data.

 At first glance, it may seem simple to work with location data. Most Android devices contain
a GPS or similar sensor, so it may be easy to believe that by simply turning this sensor on you
should have access to the data you want.

 This, however, is not the case. A user may not wish to turn on their device sensors because
it diminishes battery life and may not return a perceivable benefit. Some users may also not
want their exact movements and locations recorded and will turn off all location services and
providers.

 This is not the end of the road, though, because Android offers several options to work with
location data. Depending on the data you will be working with, you need permissions for your
application to access sensor data.

 Permissions

 Due to the sensitivity of working with location data, a permission request needs to be added to
your application. You can request the use of either a coarse or fine location.

 The ACCESS_COARSE_LOCATION permission does not use the GPS sensor data and returns a
location that is accurate to within about one city block. This information is distilled through
cell-tower and Wi-Fi data from the device.

 For many applications, this is an acceptable amount of location data because enough informa-
tion will be returned to be used to display information relevant to the user’s city or area.

 Adding this permission is the same as adding other permissions into your application manifest:

 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

ptg16707593

140 Chapter 11 Working with Location Data

 Applications that serve current weather conditions or city- or area-specific advertisements
would benefit from this type of location data. In each of these application types, the precise
location of a user is not necessarily needed.

 Note

 If you are using an advertisement service in your application, you should review their require-
ments because some advertisers require the precise or fine location of a user in order to com-
ply with their terms of service. If you want to extend battery life and not require the use of GPS
information, you may want to find another advertising service.

 To turn things up a notch and acquire the precise location of a user by use of GPS or similar
sensor data as well as the passive location provider, you can use the ACCESS_FINE_LOCATION :

 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

 To demonstrate the difference in how these locations are reported, a simple application can
be built that gets the device location and displays it when the buttons are pressed. This can be
built using an Activity, a service, and a layout, as well as by adding permissions to the applica-
tion manifest. Listing 11.1 shows the contents of the Activity for the application.

 Listing 11.1 Contents of MainActivity.java

 package com.dutsonpa.mylocation;

 import android.app.AlertDialog;
 import android.content.DialogInterface;
 import android.content.Intent;
 import android.location.Location;
 import android.location.LocationManager;
 import android.os.Bundle;
 import android.provider.Settings;
 import android.support.v7.app.AppCompatActivity;
 import android.view.Menu;
 import android.view.MenuItem;
 import android.view.View;
 import android.widget.Button;
 import android.widget.TextView;
 import android.widget.Toast;

 public class MainActivity extends AppCompatActivity {

 Button buttonFineLocation;
 Button buttonCoarseLocation;

ptg16707593

141Permissions

 MyLocationService myLocationService;
 TextView textViewResults;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 textViewResults = (TextView)findViewById(R.id.textViewResults);
 // use a service for location to avoid blocking the UI thread
 myLocationService = new MyLocationService(MainActivity.this);

 // set up GPS button click
 buttonFineLocation = (Button) findViewById(R.id.buttonFineLocation);
 buttonFineLocation.setOnClickListener(new View.OnClickListener() {

@Override
public void onClick(View v) {

Location fineLocation =
myLocationService.getLocation(LocationManager.GPS_PROVIDER);

if (fineLocation != null) {
double latitude = fineLocation.getLatitude();
double longitude = fineLocation.getLongitude();
textViewResults.setText("GPS: \nLatitude: " + latitude

+ "\nLongitude: " + longitude);
} else {
// The GPS is not currently enabled, the user needs to enable it
showProviderDialog("GPS");
textViewResults.setText("Please enable the GPS to receive location");

}
}

 });

 // set up Network Provider button click
 buttonCoarseLocation = (Button) findViewById(R.id.buttonCoarseLocation);
 buttonCoarseLocation.setOnClickListener(new View.OnClickListener() {

@Override
public void onClick(View v) {
// get the location from the service
Location coarseLocation = myLocationService
.getLocation(LocationManager.NETWORK_PROVIDER);
if (coarseLocation != null) {
double latitude = coarseLocation.getLatitude();
double longitude = coarseLocation.getLongitude();

ptg16707593

142 Chapter 11 Working with Location Data

textViewResults.setText("Network Provided: \nLatitude: " + latitude
+ "\nLongitude: " + longitude);

} else {
// There is not network provider, the user needs to enable it
showProviderDialog("NETWORK");
textViewResults.setText("Please enable WiFi to receive location");

}
}

 });
 }

 public void showProviderDialog(String provider) {

 // Build an AlertDialog
 AlertDialog.Builder alertDialogBuilder = new AlertDialog.Builder(this)
 .setTitle(provider + " SETTINGS")
 .setMessage(provider

+ " is not enabled. Would you like to enable it in the settings menu?")
 .setPositiveButton("Settings",

new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int which) {
Intent intent = new Intent(
Settings.ACTION_LOCATION_SOURCE_SETTINGS);

MainActivity.this.startActivity(intent);
}

})
 .setNegativeButton("Cancel",

new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int which) {
dialog.cancel();

}
});

// Show the AlertDialog
 AlertDialog alertDialog = alertDialogBuilder.show();
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu.menu_main, menu);
 return true;
 }

 @Override

ptg16707593

143Permissions

 public boolean onOptionsItemSelected(MenuItem item) {
 // Handle action bar item clicks here. The action bar will
 // automatically handle clicks on the Home/Up button, so long
 // as you specify a parent activity in AndroidManifest.xml.
 int id = item.getItemId();

 //noinspection SimplifiableIfStatement
 if (id == R.id.action_settings) {

return true;
 }

 return super.onOptionsItemSelected(item);
 }
 }

 Stepping through the Activity, you will find that it contains the definition for two buttons:
the service that will be used to get the location, and a TextView definition. The onCreate()
method sets the layout to be used and then sets the value for the TextView . The service is also
defined, and the Activity is passed as the context that is needed by the service. This service is
used to prevent blocking on the UI thread and needs to be used in order to avoid Application
Not Responding errors and exceptions.

 The click events for the buttons are then defined. Each one contains a check to see if a location
is available from either the GPS or the network provider. When a location exists, the latitude
and longitude are set as double values and then inserted into the TextView on the page.

 If the location is not available, the showProviderDialog() method is called and it passes
a String of either GPS or NETWORK . This method uses a builder pattern to assemble an
 AlertDialog . This pattern is used to set all the elements of the AlertDialog before it is then
displayed via an AlertDialog variable that’s set equal to alertDialogBuild.show() .

 Using an AlertDialog allows you to inform the user of sensor status and allows them an
opportunity to get to the device settings to enable data to be collected. Because the alert dialog
contains a “positive” button and a “negative” button, users can choose to cancel the operation
if they do not want to enable the location sensors.

 Figure 11.1 shows an alert dialog displayed onscreen when the device does not have any
network data available.

 Note

 You cannot directly turn on the GPS with your application. This would violate the trust and secu-
rity your application has with the user. You can detect if the GPS is disabled and allow the user
to turn it on through the system settings. This gives the end user the comfort of controlling
when applications are reporting location data.

ptg16707593

144 Chapter 11 Working with Location Data

 Listing 11.2 shows the contents of the service that is referenced from the main activity.

 Listing 11.2 Contents of MyLocationService.java

 package com.dutsonpa.mylocation;

 import android.app.Service;
 import android.content.Context;
 import android.content.Intent;
 import android.location.Location;
 import android.location.LocationListener;
 import android.location.LocationManager;
 import android.os.Bundle;
 import android.os.IBinder;

 public class MyLocationService extends Service implements LocationListener {

 protected LocationManager locationManager;
 Location location;

 // create a distance value in meters to use for update frequency
 private static final long UPDATE_DISTANCE_FILTER = 10;

 Figure 11.1 By clicking the Settings button, the user is taken to the location-sharing settings of
the device.

ptg16707593

145Permissions

 // create a 2 minute time value for use as update frequency
 private static final long UPDATE_MIN_FREQUENCY = 1000 * 60 * 2;

 /*
* Note that using a value of "0" for the variables above will request
* updates as often as the device can provide, however this will require
* much more battery usage, avoid using "0" if possible
*/

 public MyLocationService(Context context) {
 locationManager = (LocationManager)

context.getSystemService(LOCATION_SERVICE);
 }

 // create a getter for location
 public Location getLocation(String provider) {
 // Is a location provider enabled?
 if (locationManager.isProviderEnabled(provider)){

locationManager.requestLocationUpdates(provider, UPDATE_MIN_FREQUENCY,
UPDATE_DISTANCE_FILTER, this);

// Has it been 2 minutes or moved 10 meters?
if (locationManager != null){
// There is a provider and it is time to send a location update
location = locationManager.getLastKnownLocation(provider);
return location;

}
 }
 // Location provider is not enabled, return null
 return null;
 }

 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }

 @Override
 public void onLocationChanged(Location location) {
 // specific logic for location change
 }

 @Override
 public void onStatusChanged(String provider, int status, Bundle extras) {
 // specific logic for a status change
 }

ptg16707593

146 Chapter 11 Working with Location Data

 @Override
 public void onProviderEnabled(String provider) {
 // specific logic for a provider being enabled
 }

 @Override
 public void onProviderDisabled(String provider) {
 // specific logic for a provider being disabled
 }
 }

 Starting with the class declaration, you can see that LocationListener is implemented. This
is an interface that allows the location information to be updated. It contains four public
methods that you can use for performing specific logic during the lifecycle of location manage-
ment. In this example, these public classes are not used but are shown with an @Override
notation and a comment within that explains what each does.

 The LocationManager is defined that is used to manage what location provider is available as
well as to manage the frequency of the updates. Location is also defined as an object, so that
location data can be set and passed through the service.

 A method named MyLocationService is defined that requires a context passed to it. In turn, it
sets the value for the LocationManager object so that it has a properly defined context.

 The getLocation() method is the “getter” method that does most of the lifting in this
service. It starts out by checking for an enabled location provider. If a location is not found,
the method will return a null value. When a location provider exists, you can use the
 requestLocationUpdates() method by providing the provider being used, the update time
frequency, the updated distance frequency, and this , which refers to the LocationListener
implemented in this class.

 When an update is found, the locationManager is populated and then set to use the
 getLastKnownLocation() method. This method will populate the location with longitude
and latitude data for the last known location from the device.

 Now that the service has been created, you will need to make sure you have set up proper
permissions in your application manifest. Due to this application using the GPS for location
data, you will need to use ACCESS_FINE_LOCATION .

 Note

 By using ACCESS_FINE_LOCATION , you are using a greater permission request than
ACCESS_COARSE_LOCATION . Because of this, you do not need to include both permissions
because the coarse location permission is implied.

 The layout for the application contains a RelativeLayout with two TextView s and two
 Button s. Listing 11.3 shows the contents of the layout used in the application.

ptg16707593

147Permissions

 Listing 11.3 Contents of activity_main.xml

 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin" tools:context=".
MainActivity">

 <TextView android:text="@string/hello_world"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/textView" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="GPS (FINE) Location"
 android:id="@+id/buttonFineLocation"
 android:layout_marginTop="50dp"
 android:layout_below="@+id/textView"
 android:layout_centerHorizontal="true" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Network Provided (COARSE) Location"
 android:id="@+id/buttonCoarseLocation"
 android:layout_below="@+id/buttonFineLocation"
 android:layout_centerHorizontal="true" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Location Data will appear here"
 android:id="@+id/textViewResults"
 android:layout_alignParentBottom="true"
 android:layout_centerHorizontal="true" />
 </RelativeLayout>

 In the layout XML, you can see that the IDs have been set that are referenced and used in
the main activity. You should also notice that some values have been hard-coded rather than
using the traditional strings.xml file. There is an example in the first TextView of using the

ptg16707593

148 Chapter 11 Working with Location Data

 strings.xml file, and this should be followed in all your applications. The hard-coded values
in the other TextView as well as both Button s are displayed for ease of reading and under-
standing this example.

 Google Play Services Locations API

 In the previous example, the android.location package was used to demonstrate working
with fine and coarse location data. This package is still a viable option; however, Google
strongly recommends converting all existing applications and writing all new applications
using the Locations API.

 One of the major benefits of using the Locations API is that you give Google the responsibil-
ity of managing compatibility and thus allow it to push updates that will not require you to
rewrite your code in order to take advantage of new optimizations.

 A practical benefit of using the Locations API is the Fused Location Provider. This provider uses
some clever algorithms to determine an accurate guess of where a user is with minimal impact
to battery life, allowing you a much finer control of location awareness while also extending
the amount of time the device can remain powered and functional. It also allows you to set
some parameters manually to increase or decrease precision and frequency of location data
when you need it.

 Note

 Using Google Play Services requires the device running your app to be running at least Android
2.3 and have access to the Google Play Store. Some builds of Android may not be compatible,
including popular third-party custom ROMs and some devices that are based on Android but
choose not to include Google Play Services and applications.

 Working with Google Play Services is covered in depth in Chapter 15 , “Google Play Services.”
However, Listing 11.4 shows an activity that uses the Locations API to retrieve the current
location.

 Listing 11.4 Activity Using the Locations API

 package com.dutsonpa.locationsapi;

 import android.app.Activity;
 import android.content.DialogInterface;
 import android.content.DialogInterface.OnCancelListener;
 import android.content.Intent;
 import android.content.IntentSender.SendIntentException;
 import android.location.Location;
 import android.os.Bundle;
 import android.util.Log;

ptg16707593

149Google Play Services Locations API

 import android.widget.TextView;
 import android.widget.Toast;

 import com.google.android.gms.common.ConnectionResult;
 import com.google.android.gms.common.GooglePlayServicesUtil;
 import com.google.android.gms.common.api.GoogleApiClient;
 import com.google.android.gms.location.LocationServices;

 public class GooglePlayServicesActivity extends Activity implements
 GoogleApiClient.ConnectionCallbacks,
 GoogleApiClient.OnConnectionFailedListener {

 private static final String TAG = "GooglePlayServicesActiv";
 private static final String KEY_IN_RESOLUTION = "is_in_resolution";
 protected static final int REQUEST_CODE_RESOLUTION = 1;
 private GoogleApiClient mGoogleApiClient;
 private boolean mIsInResolution;
 /** Set variables other variables **/
 protected Location myLastLocation;
 protected TextView myTextView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 if (savedInstanceState != null) {

mIsInResolution = savedInstanceState.getBoolean(KEY_IN_RESOLUTION, false);
 }
 setContentView(R.layout.activity_google_play_services);

 myTextView = (TextView) findViewById(R.id.textView);
 }

 @Override
 protected void onStart() {
 super.onStart();
 if (mGoogleApiClient == null) {

mGoogleApiClient = new GoogleApiClient.Builder(this)
// Notice the addApi(LocationServices.API) added below
.addConnectionCallbacks(this)
.addOnConnectionFailedListener(this)
.addApi(LocationServices.API)
.build();

 }
 mGoogleApiClient.connect();
 }

ptg16707593

150 Chapter 11 Working with Location Data

 @Override
 protected void onStop() {
 if (mGoogleApiClient != null) {

mGoogleApiClient.disconnect();
 }
 super.onStop();
 }

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);
 outState.putBoolean(KEY_IN_RESOLUTION, mIsInResolution);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);
 switch (requestCode) {

case REQUEST_CODE_RESOLUTION:
retryConnecting();
break;

 }
 }

 private void retryConnecting() {
 mIsInResolution = false;
 if (!mGoogleApiClient.isConnecting()) {

mGoogleApiClient.connect();
 }
 }

 @Override
 public void onConnected(Bundle connectionHint) {
 Log.i(TAG, "GoogleApiClient connected");

// create a location object by using the Location API
 myLastLocation =

LocationServices.FusedLocationApi.getLastLocation(mGoogleApiClient);
 if (myLastLocation != null) {

myTextView.setText("Latitude: "+ myLastLocation.getLatitude()
+ "\nLongitude: " + myLastLocation.getLongitude());

 } else {
Toast.makeText(this, "Location data not available",
Toast.LENGTH_LONG).show();

 }
 }

ptg16707593

151Google Play Services Locations API

 @Override
 public void onConnectionSuspended(int cause) {
 Log.i(TAG, "GoogleApiClient connection suspended");
 retryConnecting();
 }

 @Override
 public void onConnectionFailed(ConnectionResult result) {
 Log.i(TAG, "GoogleApiClient connection failed: " + result.toString());
 if (!result.hasResolution()) {

GooglePlayServicesUtil.getErrorDialog(
result.getErrorCode(), this, 0, new OnCancelListener() {
@Override
public void onCancel(DialogInterface dialog) {
retryConnecting();

}
}).show();

return;
 }
 if (mIsInResolution) {

return;
 }
 mIsInResolution = true;
 try {

result.startResolutionForResult(this, REQUEST_CODE_RESOLUTION);
 } catch (SendIntentException e) {

Log.e(TAG, "Exception while starting resolution activity", e);
retryConnecting();

 }
 }
 }

 When using the Google Play Services, you must build an API client that will manage your
connection to the Google Play Services. This also means that some of the Activity lifecycle must
be managed to help keep state between the API client and the device.

 For example, the onStop() method is used to disconnect the API client as soon as the activ-
ity becomes invisible. When the activity is started, the client is reconnected if it still exists, or
re-created if it had been destroyed.

 During the creation in the onStart() method, the methods that you want to use are initial-
ized. This is noted in the code example as the addApi(LocationServices.API) portion of
code used to build the mGoogleApiClient object.

 Because most of the code is related to working with Google Services, the other point I
draw your attention to is the onConnected() method. In this method, you can see that
when the client has been connected, the myLastLocation object is set to contain the location

ptg16707593

152 Chapter 11 Working with Location Data

of the device. This is done by using getLastLocation() , which is part of the
FusedLocationApi method within the Location API.

 The FusedLocationApi is the Fused Location Provider, and it uses any location data that it
currently has to make a best guess on the current location of the device. Depending on the
resolution or accuracy level being used by the app, or other apps using the Location API, this
may be accurate to within a few feet for a fine level or accuracy, or a city block (roughly 100
meters) if coarse location data is being used.

 Using the Location API to get location updates can be done by creating a LocationRequest
object and then setting the update frequency and accuracy that you want to use. The following
snippet shows a method that is used to create a location request update:

 protected void createLocationRequest() {
 myLocationRequest = new LocationRequest();
 // set the length of update requests
 myLocationRequest.setInterval(UPDATE_INTERVAL_IN_MILLISECONDS);
 // set a maximum of how often an update can be requested
 myLocationRequest.setFastestInterval(FASTEST_UPDATE_INTERVAL_IN_MILLISECONDS);
 // set the accuracy of the requested location
 myLocationRequest.setPriority(LocationRequest.PRIORITY_HIGH_ACCURACY);
 }

 In this example, you can see that a LocationRequest is created and then has properties set
that will influence how often it is updated and how accurate it should be. Even with some of
these values set, you should be aware that they may not run at the time you want them. The
 setInterval() will set a request up; however, if another app is also running and using the
Location API with a faster interval, your application will receive faster updates than you may
set here.

 To get around this timing issue, the setFastestInterval method is used to specify a
maximum amount of updates your application can handle. This can be helpful to you because
you may be using some processor time to draw updates to a map or to update various aspects
of your UI. If you are constantly having to run logic to handle an update, you could experience
screen flicker or application jank.

 The setPriority() method allows you to control the accuracy of the location that is
returned. If you only need a rough guesstimate for a location (such as a weather application),
you could use PRIORITY_LOW_POWER . This uses minimal power and provides a location with
city-level accuracy. Should you want a little more precision, you can step up to PRIORITY_
BALANCED_POWER_ACCURACY , which is nearly the same resolution as using coarse accuracy. If
you are working on an application that needs to access the GPS or fine-level accuracy, you can
use PRIORITY_HIGH_ACCURACY .

 Should you find that you need a location, but are not interested in using any battery to use
the location, you can use a setting of PRIORITY_NO_POWER . This allows the location data to be
piggy-backed from another application that is requesting data. This is not ideal for situations

ptg16707593

153Summary

where you need relatively accurate information, but it can be helpful if you need the location
for a region and want to save as much battery power as possible.

 Summary

 This chapter discussed how to access location data through the location providers included in
the Android platform.

 You started out by learning how the android.location package can be used to locate a device
based on either coarse or fine accuracy. You learned that using location data requires adding a
permission to your application manifest and that using the fine level of accuracy will use more
battery life than using a network-provided location.

 You were shown a sample application that updates based on a time period or distance to
request a location update. This was shown as an example of how to minimize battery impact
while providing an acceptable level of location accuracy.

 Lastly, you learned that you can leverage the Google Play Services Location API to set up a
client that uses the Fused Location Provider to return location data. This provider allows you to
minimize location requests and even use minimal power in your application by using another
application that is requesting location data to share it with your application.

ptg16707593

This page intentionally left blank

ptg16707593

 12
 Multimedia

 Creating an application that can display data and take user input is fine; however, applica-
tions that contain video and audio can do much more than simply provide something to look
at or listen to. By adding multimedia to your application, you can draw a user in and provide
another dimension for user feedback and manipulation. In this chapter, you learn how to work
with audio and video within your application.

 Working with Audio

 Audio is an almost ever-present obligatory addition to many of the applications and system
functionalities of your Android device. Most notifications have an audio cue attached to them,
as do messaging and contact applications.

 Within the Android system, sound playback has been implemented with a variety of support
codecs. These codecs allow for container files to be played back on the device. Table 12.1 lists
the supported audio codecs that you can use in your application.

 Table 12.1 Supported Audio Codecs and Containers

 Codec File Format Information

 AAC LC, HE-AACv1,
HE-AACv2, AAC ELD

 .3gp, .mp4, .mp4a,
.aac, .ts

 Note that decoding .aac files was added in 3.1,
and encoding support was added in 4.0. ADIF is
not supported, and MPEG-TS files can only be
played back and not scrubbed. AAC LC, HE-AACv1,
and HE-AACv2 support mono/stereo/5.0/5.1
sources with sampling rates from 8KHz to 48KHz.
AAC ELD supports mono/stereo with sampling
rates from 16KHz to 48KHz.

 AMR-NB .3gp Encoding and decoding are fully supported with
files sampled at 8KHz.

ptg16707593

156 Chapter 12 Multimedia

 Codec File Format Information

 AMR-WB .3gp Encoding and decoding are fully supported with
files sampled at 16KHz.

 FLAC .flac Decoding support was added in 3.1. Supports
mono/stereo sources up to 48KHz at 24 bit.
Note that if the device does not have adequate
hardware to play back at maximum quality, it will
be down-sampled to 44KHz at 16 bit; however, a
dither and low-pass filter will not be applied and
may distort playback.

 MP3 .mp3 Decoding is supported. Supports mono/stereo
sources with rates of 8–320Kbps with either con-
stant or variable bitrate.

 MIDI .mid, .xmf, .mxmf,
.rtttl, .rtx, .ota, .imy

 Decoding is supported for Type 0 and Type 1
MIDI, DLS Version 1 and 2, XMF, Mobile XMF,
Ringtone, and iMelody files.

 Vorbis .ogg, .mkv Decoding support for .ogg files works for all ver-
sions of Android. Support for .mkv was added in
Android 4.0.

 PCM/WAVE .wav Offers decoding for 8-bit and 16-bit PCM files
with sampling rates of 8000Hz, 16,000Hz, and
44,100Hz. Encoding support was added in 4.1.

 Opus .mkv Decoding support was added in 5.0.

 Audio Playback

 Android has a few different ways for leveraging audio playback. One of the most common
ways is to use a SoundPool . Depending on the structure and functionality of your application,
 MediaPlayer can also be directly used.

 Starting with the first version of the Android API, the SoundPool class has been used to
manage sound playback. This is done by leveraging the internal MediaPlay service and decod-
ing audio into raw 16-bit PCM streams that can then be used in your application. SoundPool
is ideal for loading short, quick sounds that are used in games, events such as taps and clicks,
and sounds that provide system feedback. SoundPool is not ideal for loading large audio files
such as music and soundtracks because all sounds are loaded into a small shared memory pool.
Larger audio files should instead be played back using MediaPlayer . Audio that you customize
with filters and effects should be processed through AudioTrack .

 The upside is that this allows you to ship compressed audio files with your application, which
saves you from forcing users to download an application that is mostly large audio files.

ptg16707593

157Working with Audio

 The downside to this is that the files must be decoded before they are ready for use. Depending
on the size and duration of the audio source, this has the potential of adding a significant delay
to the playback of the file. To best alleviate this, you should consider loading the required
audio sources before they will be needed for playback. This can be done during a “loading”
sequence, or in the background of the application when it is starting.

 As per current application design patterns, a splash screen should be shown to reinforce brand-
ing and also to load resources that will be needed by the application. If your application has
only one “loading” screen, this is a suitable place for preparing audio streams.

 You may also be worried about resource management because loading a soundtrack, sound
effects, and other audio cues may quickly overtake the available system resources. This is a
valid concern and one that you do have some control over. When using SoundPool , you can
designate the maximum number of samples that can be active at a given time. This limit can be
further tweaked with a priority setting so that the essential audio streams will not be discarded
when too many samples are requested.

 To use SoundPool , you need to declare the variable as well the samples you want to use. This is
done as follows:

 private SoundPool mSoundPool;
 int sound1 = 0;
 int sound2 = 0;
 int sound3 = 0;

 Note

 To help eliminate bottlenecks in processing audio, starting with API 21 rigid design patterns
are enforced. Because of this, you must either create two blocks of code to execute the proper
block based on the version of Android running on the device, or create restricted applications
that will only work for targeted versions of Android.

 Due to the difference in the internals of media players starting with Lollipop (API 21), you need
to do the following if you plan on supporting multiple versions of Android:

 // For KitKat 4.4.4 and below,
 // the warning is suppressed so you can support current versions of Android
 @SuppressWarnings("deprecation")
 protected void legacySoundPool() {
 // change values as needed
 mSoundPool = new SoundPool(6, AudioManager.STREAM_MUSIC, 0);
 }

 // Starting with API 21, you must use the builder pattern to achieve
 // proper performance of SoundPool
 @TargetApi(Build.VERSION_CODES.LOLLIPOP)
 protected void builderSoundPool() {
 // change values as needed

ptg16707593

158 Chapter 12 Multimedia

 AudioAttributes attributes = new AudioAttributes.Builder()
.setUsage(AudioAttributes.USAGE_GAME)
.setContentType(AudioAttributes.CONTENT_TYPE_MUSIC)
.build();

 mSoundPool = new
 SoundPool.Builder().setAudioAttributes(attributes).setMaxStreams(6).build();
 }

 // Now that methods have been created to handle both pre and post API 21
 // The proper method can be called when you need to use SoundPool
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
 builderSoundPool();
 } else{
 legacySoundPool();
 }

 In this code block, two methods were created to help get around various player issues as well
as to initialize the SoundPool . In the legacySoundPool() method, SoundPool is used as a
constructor. The SoundPool constructor takes several arguments.

 The first argument is the maximum number of audio streams that will play simultaneously.
The second argument is the type of audio that will be streamed. This value is used to make
some internal optimizations for how the audio is handled within the AudioManager . A value
of STREAM_MUSIC is the most common and is suitable for gaming applications. The third argu-
ment is more of a placeholder that is used to adjust the quality of the audio sample.

 When using a builder to invoke SoundPool , you need to use AudioAttributes and helper
methods to set the values you want to use with the SoundPool by chaining them together.
This is seen in the preceding code block as the . setUsage() and . setContentType() methods
for the AudioAttributes , and using setAudioAttributes() and setMaxStreams() to set
the attributes and values needed for the SoundPool .

 After a SoundPool object is ready for use, you need to use a try-catch block to set up your
audio assets and load them into the sound pool. The following shows a sample block for
loading an audio asset:

 builderSoundPool();
 try {
 AssetManager assetManager = getAssets();
 AssetFileDescriptor descriptor;

 // open the sound asset, then load it into the SoundPool
 descriptor = assetManager.openFd("pewpew.mp3");
 sound1 = soundPool.load(descriptor, 0);
 } catch(IOException e) {
 // You need to put your error handling logic here
 }

ptg16707593

159Working with Audio

 After an asset is successfully loaded into the SoundPool using the load() method, you can call
that asset to play with the play() method. This method takes several arguments:

■ The first argument is the soundID , which is returned from the load() method.

■ The second argument is leftVolume , which changes how loud the playback will be on
the left channel (the range is from 0.0 to 1.0).

■ The third argument is rightVolume , which changes how loud the playback will be on
the right channel (the range is from 0.0 to 1.0).

■ The fourth argument is the priority, which is used to determine if the sound should
be stopped based on the maximum number of simultaneous audio streams that can be
played back (note that 0 is the lowest priority).

■ The fifth argument is used to determine if the audio stream is a one-shot or loop; using
any number greater than or equal to 0 will end playback at the end of the file, whereas a
value of -1 will play the sound as a loop.

■ The sixth argument is used to determine the playback rate of the audio file; a value of
 0.5 will play back at half-rate, whereas a value of 2 will play back at twice the default
rate.

 The following is an example of playing audio back with the play() method:

 mSoundPool.play(sound1, 1, 1, 0, 0, 1);

 If you need to stop a sound that is playing, do so by using the stop() method and passing the
 soundID of the item you want to stop playing. The following shows an example of stopping
 sound1 from playing:

 mSoundPool.stop(sound1);

 Tip

 To effectively use a SoundPool , consider creating “sound packs” that can be loaded for a
specific Activity and then released when the Activity is closed or destroyed. This can be done
by calling mSoundPlayer.release() . When the release method is called, all loaded audio
samples as well as any used memory are released. This allows you to create an application
that minimizes load time and will have the right sounds ready when the user needs them.

 Now that you know how to play audio files, it is time to learn about how to capture or record
them.

 Audio Recording

 Audio can be recorded or captured through the use of the MediaRecorder class. This API is
used to perform the necessary steps to record audio to your device.

ptg16707593

160 Chapter 12 Multimedia

 Note

 The Android emulator is a useful tool; however, it does not contain the ability to allow you to
test the recording behavior of an actual device. When adding an audio-capture feature to your
application, you need to test with a real device.

 To record audio, do the following:

1. Initialize the recorder.

2. Set the audio source via setAudioSource() .

3. Set the output format via setOutputFormat() .

4. Set the encoder to use via setAudioEncoder() .

5. Set the file output via setOutputFile() .

6. Ready the device to record via prepare() .

7. Start the recording via start() .

8. End the recording via stop() .

9. Either reuse the object with reset() or release the object with release() .

 In practice, this would appear as follows in your application logic:

 MediaRecorder mRecorder = new MediaRecorder();
 // use the device microphone
 mRecorder.setAudioSource(MediaRecorder.AudioSource.MIC);
 mRecorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);
 mRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
 // replace OUTPUT_LOCATION with the proper filesystem path or variable
 mRecoder.setOutputFile(OUTPUT_LOCATION);
 try {
 mRecoder.prepare();
 } catch (IllegalStateException e) {
 // handle the error here
 } catch (IOException e) {
 // handle the error here
 }

 try {
 mRecorder.start();
 } catch (IllegalStateException e) {
 // handle the error here
 }

ptg16707593

161Working with Video

 try {
 // use a button, timer, or other method to call the following:
 mRecoder.stop();
 } catch (IllegalStateException e) {
 // handle the error here
 }
 // If you want to use the same MediaRecoder object use this
 mRecorder.reset();
 // If you want to discard the MediaRecoder object use this
 mRecorder.release();
 mRecoder = null;

 Playing the recording back can be done via the MediaPlayer class. MediaPlayer can be used
to play back not only audio files but also video files. MediaPlayer needs to be initialized and
then pointed to the file to play; it then uses the prepare() and start() methods to begin
playback.

 The following two methods demonstrate how you can start and stop playback of audio files:

 private void startPlayback() {
 mPlayer = new MediaPlayer();
 try {
 // change FILETOPLAY to the path and file that you want to playback
 mPlayer.setDataSource(FILETOPLAY);
 // already in a try/catch block, no need to wrap prepare() in another
 mPlayer.prepare();
 mPlayer.start();
 } catch (IllegalStateException e) {
 // handle the error here
 } catch (IOException e) {
 // handle the error here
 }
 }

 private void stopPlayback() {
 mPlayer.release();
 mPlayer = null;
 }

 Now that you understand how audio works with Android, let’s look at how video works.

 Working with Video

 Similar to how Android supports a wide variety of audio formats and codecs, it also supports a
variety of video containers and codecs. Table 12.2 lists the supported video formats.

ptg16707593

162 Chapter 12 Multimedia

 Table 12.2 Supported Video Codecs and Containers

 Codec File Format Information

 H.263 .3gp, .mp4 Provides encoder and decoder support in all versions of
Android.

 H.264 AVC .3gp, .mp4, .ts Provides encoding support in Android 3.0+ and decoder
support for all versions in the Baseline Profile. Also note
that the .ts format only works with AAC audio and with
Android 3.0+.

 H.265 HEVC .mp4 The decoder supports Main Profile Level 3 on mobile
devices and Main Profile Level 4.1 with Android TV. HEVC
support was added in Android 5.0+.

 MPEG-4 SP .3gp Provides decoder support in all versions of Android.

 VP8 .webm, .mkv Provides decoder support for Android 2.3.3+ and encoder
support for Android 4.3+. Note that this format can be a
streamed format for Android 4.0+, and .mkv files are sup-
ported in Android 4.0+.

 VP9 .webm, .mkv The decoder is supported in Android 4.4+, and .mkv files
are supported in Android 4.0+.

 Video Playback

 Video files can be played back in a variety of different ways, including using the MediaPlayer
class. However, there is a View that specifically exists for playing back video files.

 Unlike audio files, video needs access to the screen. This means that you either need to use a
 VideoView or SurfaceView . Note that, depending on what your application does, you may
find it easier to work with a VideoView .

 When using a VideoView , note that if the Activity is moved into the background, the View will
not retain state automatically. This means that you need to pause and save the playback state
on pause and restore the video on resume of the Activity.

 Adding a VideoView can be as simple as dragging and dropping it from the Design view of
Android Studio into your layout. Alternatively, you can add the following XML to your layout
XML file:

 <VideoView
 android:id="@+id/myVideoView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_centerInParent="true" />

ptg16707593

163Working with Video

 Now that you have the VideoView added to your layout, you will want to play a video in it.
To work with a remote or streaming video, you need to create a URI for it. This can be done as
follows:

 // change the value to an actual video, this is only an example
 String videoAddress = "https://video.website.com/video.mp4";
 Uri videoURI = Uri.parse(videoAddress);

 For applications that will be streaming video files, you need to add the INTERNET permission
to your application manifest. As a reminder, this is done by adding the following permission to
your application manifest XML:

 <uses-permission android:name="android.permission.INTERNET" />

 The video can then be programmatically attached to the VideoView by referencing the
 ViewView and using the setVideoURI() method. This is shown as follows:

 VideoView myVideoView = (VideoView)findViewById(R.id.myVideoView);
 myVideoView.setVideoURI(videoURI);

 If you only wanted to play a video without user interaction, you could finish here by using
the start() method on the VideoView object. However, if you want to add scrubbing and
other controls, you can use the MediaController class with your VideoView . This is done
by creating a MediaController object, anchoring it to the VideoView , and then setting the
 MediaController object to the VideoView , as follows:

 MediaController myMediaController = new MediaController(this);
 myMediaController.setAnchorView(myVideoView);
 MyViewView.setMediaController(myMediaController);

 If you want to use the MediaPlayer class rather than the VideoView , you will need to use
a SurfaceView . The SurfaceView is a special view that is used as a canvas to be drawn on.
Because video playback involves multiple frames being drawn, the SurfaceView is used as the
screen to draw the frames on.

 Adding a SurfaceView to your application is done in one of two ways: You can use the Design
mode in Android Studio and then drag and drop the SurfaceView into your layout, or you can
add the following code to your layout XML file:

 <SurfaceView
 android:id="@+id/mySurfaceView"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

 In your Activity class, you need to implement SurfaceHolder.Callback and MediaPlayer.
OnPreparedListener . The following shows a sample of how your main Activity might look:

 public class MainActivity extends Activity
 implements SurfaceHolder.Callback, OnPreparedListener {
 // your activity code
 }

ptg16707593

164 Chapter 12 Multimedia

 When you add the required implementations, Android Studio should automatically generate
some method stubs for you. If it doesn’t, add the following to your Activity:

 @Override
 public void surfaceChanged(SurfaceHolder arg0, int arg1, int arg2, int arg3) {
 // TODO Auto-generated method stub
 }

 @Override
 public void surfaceCreated(SurfaceHolder arg0) {
 // MediaPlayer code will go in this method
 }

 @Override
 public void surfaceDestroyed(SurfaceHolder arg0) {
 // TODO Auto-generated method stub
 }

 @Override
 public void onPrepared(MediaPlayer mp) {
 // MediaPlayer start method should be called here
 }

 The next step is to create a few variables, set them, set up the MediaPlayer , and then start the
player. The following shows an example of this:

 // create variables
 private MediaPlayer mPlayer;
 private SufaceHolder mSurfaceHolder;
 private SurfaceView mSurfaceView;
 String videoAddress = "https://video.website.com/video.mp4";

 // other code in your activity...

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 // onCreate code...
 mSurfaceView = (SurfaceView) findViewById(R.id.mySurfaceView);
 mSurfaceHolder = mSurfaceView.getHolder();
 mSurfaceHolder.addCallback(this);
 }

 // other code in your activity...

 @Override
 public void surfaceCreated(SurfaceHolder arg0) {
 // Remember to handle the setup of the MediaPlayer for the version
 // of Android that you are targeting, make changes as needed

ptg16707593

165Summary

 try {
 mPlayer = new MediaPlayer();
 mPlayer.setDisplay(mSurfaceHolder);
 mPlayer.setDataSource(videoAddress);
 mPlayer.prepare();
 mPlayer.setOnPreparedListener(this);
 mPlayer.setAudioStreamType(AudioManager.STREAM_MUSIC);
 } catch (Exception e) {
 // handle the exception
 }
 }

 // other code in your activity...

 @Override
 public void onPrepared(MediaPlayer mp) {
 mPlayer.start();
 }

 In the preceding example, note the comments to help you place the code in the proper loca-
tion in your application. When working with MediaPlayer , remember to use the builder
pattern when working with API 21+.

 You should also consider using a service to prepare playback for video and audio files to keep
any potential sluggishness and ANR errors from wrecking your application.

 Summary

 In this chapter, you learned that Android has wide support for many types of media files. You
learned that audio files can be bundled in your application as sound effects. You learned that
these files can be included in a compressed format to save device space and then be processed
into memory for playback.

 You learned that there is a limit to how many files can be played simultaneously and that files
loaded into memory can be bundled into sound packs that can be loaded when needed and
released when finished to clear out used system resources.

 You also learned that Android has broad support for video containers and codecs. Some video
files, such as VP9 and WebM, offer better compression and quality than other files but are only
supported in newer versions of Android.

 Lastly, you learned that video files can be played back with a VideoView . You were shown
how to include a VideoView and then use it in conjunction with a MediaController to add
controls such as a play/pause button as well as a scrubbing bar. You also learned that videos
can leverage the MediaPlayer class and be played back on a SurfaceView , and you were
shown the basic setup of doing this in an Activity.

ptg16707593

This page intentionally left blank

ptg16707593

 13
 Optional Hardware APIs

 Android devices come in many different shapes and sizes. Some also come with extra features
or hardware. Not every device comes with every supported feature, but as a developer, you
should be looking to provide experiences that will work with the myriad of available devices.
Working with Bluetooth, NFC, USB, and other device sensors gives your application greater
functionality and usefulness. In this chapter, you learn about how this hardware is imple-
mented into Android and some of the ways that you can leverage device features.

 Bluetooth

 Bluetooth support in Android has come a considerable way since it was first introduced in API
level 5. This form of Bluetooth is known as Bluetooth Classic. Starting with API 18, develop-
ers can take advantage of Bluetooth low energy (BLE), or Bluetooth Smart. BLE offers a version
of the popular protocol that uses several enhancements to allow it to use less power, enabling
both the receiver and the transmitter to save on power. It also brings with it the ability to work
with new protocols, such as Eddystone, that allow the use of “beacons” to detect when a device
is near and interact with it without pairing.

 To take things even further when using Bluetooth with Android devices, the Generic Access
Profile portion of the Bluetooth stack has been added in API level 21+.

 Bluetooth communication can be broken down into three basic steps:

1. Discovery

2. Exploration

3. Interaction

 During the discovery stage, two devices broadcast their availability to one another. When they
find each other, the smart devices enter into pairing or information-exchange mode and begin
broadcasting a unique address that can be received by other Bluetooth devices that are within
the proximity of the Bluetooth radio.

ptg16707593

168 Chapter 13 Optional Hardware APIs

 Once the two devices discover one another, they move into the exploration stage. During
exploration, a device sends a request to pair with the other one. Depending on the device and
current Bluetooth support, a pairing may not be needed to exchange data because data can be
passed via an exchanged encryption key.

 This now moves the process into the interaction stage. Although this is not strictly required
as a security measure, before the devices will move into a fully interactive mode, a device may
request a passcode to be entered or a passcode exchanged to confirm that it is connecting to
the intended device. Note that with BLE, this is not a standard “pairing mode” because the
connections made are casual.

 Whether you are working with Bluetooth Classic or BLE, the APIs you will work with are found
in the android.bluetooth package. Also, accessing the Bluetooth radio requires user permis-
sions, so you need to add the following to your application manifest XML:

 <uses-permission android:name="android.permission.BLUETOOTH"/>
 <uses-permission android:name="android.permission.BLUETOOTH_ADMIN"/>

 The first permission allows access to the Bluetooth hardware, whereas the second permission
allows access to enabling the Bluetooth radio as well as for using it for device discovery.

 If you are working with BLE devices and want to filter your app so that only devices that
support BLE can download your application from the Google Play store, you can use the follow-
ing <uses-feature> element in conjunction with the previously mentioned permissions:

 <uses-feature android:name="android.hardware.bluetooth_le" android:required="true"/>

 Enabling Bluetooth

 When working with Bluetooth Classic, you need to use the BluetoothAdapter class and the
 getDefaultAdapter() method to see if Bluetooth is available on the device. If there is an
adapter available but not currently enabled, you can start an Intent to turn on Bluetooth. The
following snippet demonstrates how this is done:

 BluetoothAdapter myBluetooth = BluetoothAdapter.getDefaultAdapter();
 if(!myBluetooth.isEnabled()) {
 Intent enableIntent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);
 startActivityForResult(enableIntent, REQUEST_ENABLE_BT);
 }

 Enabling the BLE adapter is a similar process, but has the notable difference of using the
 BluetoothManager to get the adapter instead of just using the BluetoothAdapter class. After
you create an adapter, you can check to see if the adapter exists and if it is enabled. The follow-
ing code snippet shows how this is done:

 private BluetoothAdapter myBluetoothAdapter;

 final BluetoothManager bluetoothManager =
 (BluetoothManager) getSystemService(Context.BLUETOOTH_SERVICE);
 myBluetoothAdapter = bluetoothManager.getAdapter();

ptg16707593

169Bluetooth

 if (myBluetoothAdapter == null || !myBluetoothAdapter.isEnabled()) {
 Intent enableIntent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);
 startActivityForResult(enableIntent, REQUEST_ENABLE_BT);
 }

 Now that Bluetooth is enabled and ready for use, it is time to find nearby devices.

 Discovering Devices with Bluetooth

 If you have not paired with a device before and you are using Bluetooth Classic, you will
want to scan for available devices that you can connect with. This can be done by using the
 startDiscovery() method, which begins a short scan of nearby devices that are currently
available for connection. The following code snippet shows the use of a BroadcastReceiver
to fire an Intent for Bluetooth devices that are found during the scan:

 // Scanning for Bluetooth Classic
 private final BroadcastReceiver myReceiver = new BroadcastReceiver() {
 public void onReceive(Context context, Intent intent) {
 String action = intent.getAction();
 if (BluetoothDevice.ACTION_FOUND.equals(action)) {

// a bluetooth device has been found, create an object from the Intent
BluetoothDevice device =
intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);

// Display the name and address of the found device
mArrayAdapter.add(device.getName() + "\n" + device.getAddress());

 }
 }
 };

 // Register BroadcastReceiver
 IntentFilter filter = new IntentFilter(BluetoothDevice.ACTION_FOUND);
 registerReceiver(myReceiver, filter);

 When you are finished scanning, you should use the cancelDiscovery() method. This allows
resources and processor-intensive activities to stop and improve performance. You should also
remember to unregister myReciver in the onDestroy() method of your application lifecycle.

 If you have already paired with a device, you can save some device resources by getting a list
of the previously paired devices and scanning to see if they are available. The following code
snippet demonstrates how to retrieve the list of devices:

 Set<BluetoothDevice> pairedDevices = myBluetoothAdapter.getBondedDevices();
 if(pairedDevices.size() > 0) {
 for(BluetoothDevice device : pariedDevices) {
 // add found devices to a view
 myArrayAdapter.add(device.getName() + "\n" + device.getAddress());
 }
 }

ptg16707593

170 Chapter 13 Optional Hardware APIs

 Because BLE devices can behave differently, there is a different method to use when you are
scanning for them. The startLeScan() method scans for devices and then uses a callback to
display scan results. The following code snippet shows both how to scan and a sample callback
method to display the results:

 private BluetoothAdapter myBluetoothAdapter;
 private boolean myScanning;
 private Handler myHandler;

 // Stop scanning after 20 seconds
 private static final long SCAN_PERIOD = 20000;

 private void scanLeDevice(final boolean enable) {
 if (enable) {
 // Stops scanning after a pre-defined scan period.
 myHandler.postDelayed(new Runnable() {

@Override
public void run() {
myScanning = false;
myBluetoothAdapter.stopLeScan(myLeScanCallback);

}
 }, SCAN_PERIOD);

 myScanning = true;
 myBluetoothAdapter.startLeScan(myLeScanCallback);
 } else {
 myScanning = false;
 myBluetoothAdapter.stopLeScan(myLeScanCallback);
 }
 }

 private LeDeviceListAdapter myLeDeviceListAdapter;

 // BLE scan callback
 private BluetoothAdapter.LeScanCallback myLeScanCallback =
 new BluetoothAdapter.LeScanCallback() {
 @Override
 public void onLeScan(final BluetoothDevice device, int rssi,

byte[] scanRecord) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {

myLeDeviceListAdapter.addDevice(device);
myLeDeviceListAdapter.notifyDataSetChanged();

 }
 });
 }
 };

ptg16707593

171Bluetooth

 Connecting via Bluetooth Classic

 With Bluetooth Classic communications, one device needs to be the server. Note that a server
can have multiple clients and acts as the go-between for any other connected devices. Clients
cannot directly communicate with each other, so the server must forward and manage any data
that would be shared between multiple clients.

 To establish communication, a socket is opened and data is passed. To make sure that data
is being passed to the correct client, you must pass the Universally Unique Identifier (UUID)
when creating the socket. After the socket is created, the accept() method is used to listen,
and, when it’s finished, the close() method should be called to close the socket. You should
be especially careful with the accept() method as it is blocking and therefore must not run
on the main thread. The following code demonstrates how to set up the socket and accept
communications as a server:

 private class AcceptThread extends Thread {
 private final BluetoothServerSocket myServerSocket;

 public AcceptThread() {
 // Create a temp object for use with myServerSocket, because
 // myServerSocket is final
 BluetoothServerSocket tmp = null;
 try {

// MY_UUID is the app UUID string
tmp = mBluetoothAdapter.listenUsingRfcommWithServiceRecord(NAME, MY_UUID);

 } catch (IOException e) { }
 myServerSocket = tmp;
 }

 public void run() {
 BluetoothSocket socket = null;
 // make sure myServerSocket is not null
 if (myServerSocket != null) {

// Use loop to keep the socket open for either error or data returned
while (true) {
try {
socket = myServerSocket.accept();

} catch (IOException e) {
break;

}
if (socket != null) {
// use a method to handle returned data in a different thread
manageConnectedSocket(socket);
myServerSocket.close();
break;

}
}

ptg16707593

172 Chapter 13 Optional Hardware APIs

 }
 }

 // This method will close the socket and the thread
 public void cancel() {
 try {

myServerSocket.close();
 } catch (IOException e) { }
 }
 }

 To connect as a client, you need to create an object containing the BluetoothDevice of the
server. You then need to pass a matching UUID that will be used to ensure you are commu-
nicating with the correct device. Just like communicating as a server, the connect() method
is used to establish a connection and either get data or an error. The following sample code
snippet shows the code required to connect as a client:

 private class ConnectThread extends Thread {
 private final BluetoothSocket mySocket;
 private final BluetoothDevice myDevice;

 public ConnectThread(BluetoothDevice device) {
 // Create a temp object for mySocket, because mySocket is final
 BluetoothSocket tmp = null;
 myDevice = device;

 // Get a BluetoothSocket to connect with the BluetoothDevice
 try {

// MY_UUID is the app UUID string
tmp = device.createRfcomySocketToServiceRecord(MY_UUID);

 } catch (IOException e) { }
 mySocket = tmp;
 }

 public void run() {
 // Cancel discovery because it will slow down the connection
 mBluetoothAdapter.cancelDiscovery();

 try {
// Use the socket to connect or throw an exception
// This method is blocking
mySocket.connect();

 } catch (IOException connectException) {
// Unable to connect, close the socket
try {
mySocket.close();

} catch (IOException closeException) { }

ptg16707593

173Bluetooth

return;
 }

 // use a method to handle returned data in a different thread
 manageConnectedSocket(mySocket);
 }

 // This method will close the socket and the thread
 public void cancel() {
 try {

mySocket.close();
 } catch (IOException e) { }
 }
 }

 Communicating with BLE

 As mentioned earlier, BLE makes a slight modification to the exploration and interaction phase
of connectivity. Instead of devices being required to be paired or even provide a passcode,
devices can be detected and perform a key exchange without interaction. These keys provide an
encryption method that can be used to encrypt and decrypt data between the devices without
the need of a successful pair between them.

 Rather than determine a server and client relationship, you need to connect to the Generic
Attribute Profile (GATT) server of the device. This can be done with the connectGatt()
method. This method takes a context, a Boolean to determine autoConnect , and a reference to
a callback method. This is done as follows:

 myBluetoothGatt = device.connectGatt(this, false, myGattCallback);

 The callback method may be invoked in a service or other form of logic. An example of the
method being used inside of a service follows:

 private final BluetoothGattCallback mGattCallback =
 new BluetoothGattCallback() {
 @Override
 public void onConnectionStateChange(BluetoothGatt gatt, int status,
 int newState) {
 String intentAction;
 if (newState == BluetoothProfile.STATE_CONNECTED) {

intentAction = ACTION_GATT_CONNECTED;
myConnectionState = STATE_CONNECTED;
broadcastUpdate(intentAction);
Log.i(TAG, "Connected to GATT server.");
Log.i(TAG, "Attempting to start service discovery:" +
gatt.discoverServices());

ptg16707593

174 Chapter 13 Optional Hardware APIs

 } else if (newState == BluetoothProfile.STATE_DISCONNECTED) {
intentAction = ACTION_GATT_DISCONNECTED;
myConnectionState = STATE_DISCONNECTED;
Log.i(TAG, "Disconnected from GATT server.");
broadcastUpdate(intentAction);

 }
 }

 @Override
 // New services discovered
 public void onServicesDiscovered(BluetoothGatt gatt, int status) {
 if (status == BluetoothGatt.GATT_SUCCESS) {

// call an update method to announce service
broadcastUpdate(ACTION_GATT_SERVICES_DISCOVERED);

 } else {
Log.w(TAG, "onServicesDiscovered received: " + status);

 }
 }

 @Override
 // Result of a characteristic read operation
 public void onCharacteristicRead(BluetoothGatt gatt,
 BluetoothGattCharacteristic characteristic,
 int status) {
 if (status == BluetoothGatt.GATT_SUCCESS) {

// call an update method to pass data
broadcastUpdate(ACTION_DATA_AVAILABLE, characteristic);

 }
 }
 };

 In the instances where the GATT server is connected, or when data is passed, a method named
 broadcastUpdate() is called. This method handles the custom logic that you will be process-
ing. The following demonstrates using a StringBuilder to handle the data being passed:

 private void broadcastUpdate(final String action) {
 final Intent intent = new Intent(action);
 sendBroadcast(intent);
 }

 private void broadcastUpdate(final String action,
 final BluetoothGattCharacteristic characteristic) {
 final Intent intent = new Intent(action);

 // Format data for HEX as this is not a Heart Rate Measurement Profile
 final byte[] data = characteristic.getValue();
 if (data != null && data.length > 0) {

ptg16707593

175Bluetooth

 final StringBuilder stringBuilder = new StringBuilder(data.length);
 for(byte byteChar : data)

stringBuilder.append(String.format("%02X ", byteChar));
 intent.putExtra(EXTRA_DATA, new String(data) + "\n" +

stringBuilder.toString());
 }
 sendBroadcast(intent);
 }

 To handle the data sent through the Intent, you need to have a BroadcastReceiver set up.
This receiver picks up more than just device data; it also listens for the state of the GATT server.
By listening for events, you can handle for disconnection, connection, working with data, and
handling services. The following is sample code for working with these events:

 private final BroadcastReceiver mGattUpdateReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 final String action = intent.getAction();
 if (BluetoothLeService.ACTION_GATT_CONNECTED.equals(action)) {

myConnected = true;
updateConnectionState(R.string.connected);
invalidateOptionsMenu();

 } else if (BluetoothLeService.ACTION_GATT_DISCONNECTED.equals(action)) {
myConnected = false;
updateConnectionState(R.string.disconnected);
invalidateOptionsMenu();
clearUI();

 } else if (BluetoothLeService.
ACTION_GATT_SERVICES_DISCOVERED.equals(action)) {
// Update the UI for supported services and characteristics
displayGattServices(mBluetoothLeService.getSupportedGattServices());

 } else if (BluetoothLeService.ACTION_DATA_AVAILABLE.equals(action)) {
displayData(intent.getStringExtra(BluetoothLeService.EXTRA_DATA));

 }
 }
 };

 With the GATT server connected, you can then loop through BluetoothGattService
to find available services and read and write data to and from them. You can also set up
a listener for GATT notifications by using your myBluetoothGatt object and using
the setCharacteristicNotification() method to inform the local system that a
characteristic value has changed. To inform the remote system, you need to get the
 BluetoothGattDescriptor for the characteristic and use setValue(BluetoothGatt
Descriptor.ENABLE_NOTIFICATION_VALUE) to set the value. You then use gatt.
writeDescriptor to send the value to the remote system. When onDescriptorWrite in
 BluetoothGattCallback runs, you are then ready to receive updates. After you complete your

ptg16707593

176 Chapter 13 Optional Hardware APIs

setup, you can override the onCharacteristicChanged() method to broadcast an update
when a GATT notification is available.

 When you are finished communicating with a BLE device, use the close() method to release
the connection. The following is an example of the close() method in use:

 public void close() {
 if (myBluetoothGatt == null) {
 return;
 }
 myBluetoothGatt.close();
 myBluetoothGatt = null;
 }

 Near Field Communication

 Near Field Communication (NFC) is a passive technology created by NXP Semiconductors that
allows “tags” to be used with NFC-capable devices. It is a radio technology that has a very small
operational field. This field is generally about 4cm, but can be as much as 10cm, depending on
the radio of the device and the size of the tag.

 Unlike Bluetooth beacons, NFC tags do not require a power source. This makes them ideal
for use in semi-permanent locations and as a medium to automate tasks or distribute relevant
information for a set location.

 Information is stored in bits of data in NFC Data Exchange Format (NDEF) messages. Each
NDEF message will contain at least one NDEF record. A record will contain the following fields:

■ Three-bit type name format (TNF)

■ Variable-length type

■ Variable-length ID (optional)

■ Variable-length payload

 The TNF field can contain values that the Android system uses to determine how to handle
the information presented in the rest of the NDEF message. The rest of the data is generally
contained inside of a physical “tag.” However, using technology similar to Android Beam, a
device itself may take the role of a physical tag.

 Note that not all NFC tags work with all Android devices. This is due to the format and type of
NFC tag used compared to the NFC reader hardware inside of the Android device. As defined by
the NFC Forum, there are several types of NFC tags:

■ Type 1 : Based on ISO/IEC 14443A, is readable and writeable, can be set to read-only, and
has 96 bytes of space but is expandable to 2KB.

■ Type 2 : Based on ISO/IEC 14443A, is readable and writeable, can be set to read-only, and
has 48 bytes of space but is expandable to 2KB.

ptg16707593

177Near Field Communication

■ Type 3 : Based on (JIS) X 6319-4, comes preconfigured either as readable and writeable or
as read-only, and memory can be up to 1MB.

■ Type 4 : Compatible with ISO/IEC 14443, comes preconfigured either as readable and
writeable or as read-only, and memory can be up to 32KB.

■ MIFARE Classic : Compatible with ISO/IEC 14443, is readable and writeable, can be set to
read-only, and has either 1KB or 4KB of space available.

 These are the most common types of tags available; however, there are NFC tags in circula-
tion that do not conform to the standards of the NFC Forum. These tags are not guaranteed to
work with all NFC hardware. Depending on the device manufacturer, you may find that some
Android devices can read tags that other devices cannot. The MIFARE classic is an example of
a tag that may not be read or written to by some Android devices. This may be important to
know because it may confuse some users who change devices and find that a set of tags no
longer works with their new device.

 Working with NFC in your application requires the use of the NFC permission. To add this
permission to your application, you need to open your application manifest XML file and add
the following to it:

 <uses-permission android:name="android.permission.NFC"/>

 As an extra step, you can also add a <users-feature /> element to the manifest to have your
application filtered by the Google Play store so that devices without NFC cannot download it.
This is optional, but may save you from having to deal with upset users. Add the following to
your application manifest XML to enable the Google Play filtering:

 <uses-feature android:name="android.hardware.nfc" android:required="true" />

 When a tag is scanned by your device, it reads the data stored in the TNF and determines the
MIME type or URI of the tag. The internal tag dispatch system is used to determine whether the
tag is compatible, empty, or if it should be opened in a specific app. Determining which app to
open relies on an Intent being created and then matched against any matching Activities.

 If your app should respond to the Intent, you need to filter for one or more of the following
Intents:

■ ACTION_NDEF_DISCOVERED

■ ACTION_TECH_DISCOVERED

■ ACTION_TAG_DISCOVERED

 ACTION_NDEF_DISCOVERED

 To filter for this intent, you can either filter on the MIME type, or on the URI. The following
shows a sample of filtering for a MIME type of text/plain :

ptg16707593

178 Chapter 13 Optional Hardware APIs

 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <data android:mimeType="text/plain" />
 </intent-filter>

 Filtering on the URI is similar, but changes out the property of <data> element from
 android:mimetype to android:scheme with some added properties. The following shows how
to filter for a URI of http://www.android.com/index.html :

 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <data android:scheme="http"

android:host="www.android.com"
android:pathPrefix="/index.html" />

 </intent-filter>

 ACTION_TECH_DISCOVERED

 When filtering on this Intent, you need to create a resource XML file that contains all the
technology types you want to monitor. This ensures that when a tag is scanned, your app
only opens when the tag contains the technology your app is expecting to work with. This file
should reside in the /res/xml folder of your project. An example of the XML file follows:

 <resources xmlns:xliff="urn:oasis:names:tc:xliff:document:1.2">
 <tech-list>
 <tech>android.nfc.tech.IsoDep</tech>
 <tech>android.nfc.tech.NfcA</tech>
 <tech>android.nfc.tech.NfcB</tech>
 <tech>android.nfc.tech.NfcF</tech>
 <tech>android.nfc.tech.NfcV</tech>
 <tech>android.nfc.tech.Ndef</tech>
 <tech>android.nfc.tech.NdefFormatable</tech>
 <tech>android.nfc.tech.MifareClassic</tech>
 <tech>android.nfc.tech.MifareUltralight</tech>
 </tech-list>
 </resources>

 To reference your XML technology list, you need to add a <meta-data> tag to your applica-
tion manifest XML. This will contain the path to your resource list. The following shows
an example of the <intent-filter> and <meta-data> elements needed for working with
 ACTION_TECH_DISCOVERED:

 <intent-filter>
 <action android:name="android.nfc.action.TECH_DISCOVERED"/>
 </intent-filter>

ptg16707593

179Near Field Communication

 <meta-data android:name="android.nfc.action.TECH_DISCOVERED"
android:resource="@xml/nfc_tech_filter" />

 Note that the resource path used in the <meta-data> element uses a property with a value of
 @xml/nfc_tech_filter . This value refers to the file /res/xml/nfc_tech_filter.xml in your
project.

 ACTION_TAG_DISCOVERED

 The final Intent, and perhaps the easiest to implement a filter for, is ACTION_TAG_DISCOVERED .
Because you are not filtering for what type of technology or information the tag contains, you
can use the following <intent-filter> :

 <intent-filter>
 <action android:name="android.nfc.action.TAG_DISCOVERED"/>
 </intent-filter>

 Reading and writing information to NFC tags requires you to define your own protocol stack.
The following code demonstrates how to work with the fairly common MIFARE Ultralight tag:

 package com.example.android.nfc;

 import android.nfc.Tag;
 import android.nfc.tech.MifareUltralight;
 import android.util.Log;
 import java.io.IOException;
 import java.nio.charset.Charset;

 public class MifareUltralightTagTester {

 private static final String TAG =
 MifareUltralightTagTester.class.getSimpleName();

 // Write to the tag:
 public void writeTag(Tag tag, String tagText) {
 MifareUltralight ultralight = MifareUltralight.get(tag);
 try {

ultralight.connect();
ultralight.writePage(4, "abcd".getBytes(Charset.forName("US-ASCII")));
ultralight.writePage(5, "efgh".getBytes(Charset.forName("US-ASCII")));
ultralight.writePage(6, "ijkl".getBytes(Charset.forName("US-ASCII")));
ultralight.writePage(7, "mnop".getBytes(Charset.forName("US-ASCII")));

 } catch (IOException e) {
Log.e(TAG, "IOException while closing MifareUltralight", e);

 } finally {
if (ultralight != null) {
try {
ultralight.close();

ptg16707593

180 Chapter 13 Optional Hardware APIs

} catch (IOException e) {
Log.e(TAG, "IOException while closing MifareUltralight", e);

}
}

 }
 }

 // Read the tag:
 public String readTag(Tag tag) {
 MifareUltralight mifare = MifareUltralight.get(tag);
 try {

mifare.connect();
byte[] payload = mifare.readPages(4);
return new String(payload, Charset.forName("US-ASCII"));

 } catch (IOException e) {
Log.e(TAG, "IOException while writing MifareUltralight message", e);

 } finally {
if (mifare != null) {
try {
mifare.close();

}
catch (IOException e) {
Log.e(TAG, "Error closing tag", e);

}
 }
 }
 return null;
 }
 }

 You may be wondering how this code is expected to function in the instance when you have
already defined an Intent to trigger when a tag is near the device. Without a solution to this
problem, every time you place a tag near your phone, rather than writing it would constantly
read the tag. This is where the Foreground Dispatch System comes into play.

 The Foreground Dispatch System allows you to hijack an Intent and stop it from going to
where it normally would. It requires you to add a PendingIntent in your application’s
 onCreate() method as well as to use disableForegroundDispatch() in the onPause()
method and enableForegroundDispatch() in the onResume() method. Finally, you must
also create a method that will handle the data from the scanned NFC tag.

 The following code snippet shows an example of the code needed to work with the Foreground
Dispatch System:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 // your code for the method here

ptg16707593

181Device Sensors

 PendingIntent pendingIntent = PendingIntent.getActivity(
this, 0, new Intent(this, getClass())
.addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP), 0);

 // add an IntentFilter to know what to intercept
 IntentFilter ndef = new IntentFilter(NfcAdapter.ACTION_NDEF_DISCOVERED);
 try {
 // This will catch ALL MIME data types
 ndef.addDataType("*/*");
 } catch (MalformedMimeTypeException e) {
 throw new RuntimeException("fail", e);
 }
 intentFiltersArray = new IntentFilter[] {ndef };

 // the techListsArray is used to create a list of tech you will support
 // this is used when enabling Foreground Dispatch
 techListsArray = new String[][] { new String[] { NfcF.class.getName() } };
 }

 @Override
 public void onPause() {
 super.onPause();
 // release to resume default scanning behavior
 myAdapter.disableForegroundDispatch(this);
 }

 @Override
 public void onResume() {
 super.onResume();
 // enable to hijack default scanning behavior
 myAdapter.enableForegroundDispatch(this, pendingIntent, intentFiltersArray,

techListsArray);
 }

 public void onNewIntent(Intent intent) {
 Tag tagFromIntent = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);
 // Logic here to handle tagFromIntent
 }

 Device Sensors

 Android provides an API for sensors that device manufacturers may have added to their device.
The following is a list of sensors that are supported by Android 5.0:

ptg16707593

182 Chapter 13 Optional Hardware APIs

■ Accelerometer : Hardware

■ Ambient temperature : Hardware

■ Gravity : Software or hardware

■ Gyroscope : Hardware

■ Light : Hardware

■ Linear acceleration : Software or hardware

■ Magnetic field : Hardware

■ Pressure : Hardware

■ Proximity : Hardware

■ Relative humidity : Hardware

■ Rotation vector : Software or hardware

 Sensors can be built into the device as sensor hardware, or they may be computed through soft-
ware calculation. In these instances the values are calculated data taken from other sensors.

 Many of these sensors should seem familiar to you, and some have even been leveraged as part
of great experiments that have turned into defined standards. For example, the first generation
of Cardboard used the magnetic field sensor to determine when an action should be performed.
Other sensors are used by the Android system itself without you even realizing it; the proximity
sensor is used to turn the screen off when you are taking a phone call.

 Note that previous versions of Android do not support all the listed sensors. Note that in some
previous versions of Android, an orientation sensor and a temperature sensor were available but
have since become deprecated.

 Detecting the Available Sensors

 Not every sensor that has an API will be included in every device, so you should do your best
to offer a fallback solution or to remove options that require the sensor to work.

 To see what sensors are available, you should create a SensorManager object. This object will
contain all the sensors that are either available or that match a particular set of sensors. The
following code snippet shows how to populate the SensorManager object:

 // create object
 private SensorManager mySensorManager;

 // in your onCreate or similar method:
 mySensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);

 // get all device sensors:
 List<Sensor> allSensors = mySensorManager.getSensorList(Sensor.TYPE_ALL);

ptg16707593

183Device Sensors

 // get just the proximity sensor(s):
 List<Sensor> proxSensors = mySensorManager.getSensorList(Sensor.TYPE_PROXIMITY);

 In the previous snippet, it may seem confusing that a list is used for what appears to be a single
sensor. A list is used because there may be multiple sensors on the device, and some by specific
manufacturers that you may want to use. In this case, you could create a logic check that looks
for a specific sensor and vendor before allowing the sensor to be used. The following snippet
shows this in action:

 // see if the device has a proximity sensor
 if (mySensorManager.getDefaultSensor(Sensor.TYPE_PROXIMITY) != null) {
 List<Sensor> proxSensors =

mySensorManager.getSensorList(Sensor.TYPE_PROXIMITY);
 // loop through the sensors to find a Samsung version 1 sensor
 for(int i=0; i<proxSensors.size(); i++) {
 if ((proxSensors.get(i).getVendor().contains("Samsung")) &&

(proxSensors.get(i).getVersion() == 1)) {
// Success! set a variable to the sensor
mySensor = proxSensors.get(i);
break;

 }
 }
 }

 If you can get away with using another sensor, you can modify the previous snippet by
adding an else clause that then does another loop through a secondary sensor to determine
availability.

 Note

 If your app must have a specific sensor available in order to function, you can use
 <uses-feature> with the sensor information added in your manifest to add filtering to
your app via the Google Play store. This helps you avoid bad ratings from users who do
not meet the system requirements of your app.

 After determining that you have sensors available, you need to work with the data they
provide.

 Reading Sensor Data

 To get started reading data, you want to set up an event listener. This can be done by using
the SensorEventListener interface and working with the onAccuracyChanged() and
onSensorChanged() methods.

 Of these two methods, onAccuracyChanged() provides you with the current accuracy setting
of the sensor you are working with. This provides a Sensor object with one of the following
constants:

ptg16707593

184 Chapter 13 Optional Hardware APIs

■ SENSOR_STATUS_UNRELIABLE

■ SENSOR_STATUS_ACCURACY_LOW

■ SENSOR_STATUS_ACCURACY_MEDIUM

■ SENSOR_STATUS_ACCURACY_HIGH

 To perform your custom logic, you need to override the method and place your specific logic
handling inside. The following is a sample snippet:

 @Override
 public final void onAccuracyChanged(Sensor sensor, int accuracy) {
 // Custom logic goes here for sensor accuracy changes
 }

 The other method, onSensorChanged() , provides you with a SensorEvent object that
contains sensor accuracy, a timestamp of data provided, which sensor provided data, and the
sensor data. Just like the onAccuracyChanged() method, you will need to override the method
to perform your custom logic. The following is a snippet demonstrating the method override:

 @Override
 public final void onSensorChanged(SensorEvent event) {
 // The "event" may return multiple values
 // Create variables to contain event values
 // Perform custom logic based on sensor values
 }

 With custom logic set up, you can now use the SensorManager to register and unregister
the event listeners in the onResume() and onPause() methods. When you register the event
listener, you need to specify which sensor to listen to as well as the speed or sampling rate of
the sensor. To register the event listener, use the following snippet of code:

 // define the Sensor Manager and Sensor
 private SensorManager mySensorManager;
 private Sensor mySensor

 //... other methods and activity lifecycle methods ...

 @Override
 protected void onResume() {
 super.onResume();
 mySensorManager.registerListener(this, mySensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 }

 Notice the use of SENSOR_DELAY_NORMAL for the sensor sampling speed; this has a default value
of 200,000 microseconds. You can set your own value in microseconds, or you can use the
following values:

ptg16707593

185Summary

■ SENSOR_DELAY_GAME : 20,000-microsecond delay

■ SENSOR_DELAY_UI : 60,000-microsecond delay

■ SENSOR_DELAY_FASTEST : 0-microsecond delay

 Some sensors happily take a 0-microsecond delay but will not actually return information at
that rate. They offer information back at the fastest available speed, however. You should also
keep in mind that using a lower delay value creates an increase on power usage, thus resulting
in reduced battery life for the user.

 You should unregister sensor listeners when you are finished with them, including when
pausing your application. Failure to unregister the sensors in use causes them to continue to
collect data and use power. It should also be noted that unless a partial wake lock has been
invoked, sensor collection will stop when the screen is turned off. An example of how to unreg-
ister the listener in the onPause() event lifecycle is shown next:

 // define the SensorManager
 private SensorManager mySensorManager;

 // ... other methods and activity lifecycle methods ...

 @Override
 protected void onPause() {
 super.onPause();
 mySensorManager.unregisterListener(this);
 }

 Summary

 In this chapter, you learned about using Bluetooth with your application. You learned that two
standards of Bluetooth are available. Older devices use Bluetooth Classic, and newer devices can
leverage the new features of BLE.

 You also learned about NFC and the types of tags that can be used. You learned about working
with NDEF and TNF records on NFC tags. You also learned how to detect support for NFC in
the device and that filtering can be applied to have your application only work with devices
that have NFC support. You then learned how to read and write information using the
Foreground Dispatch System and how it is leveraged to allow you to intercept triggered Intents.
This enables you to read and write data without worrying about other applications taking the
focus away from the work you are doing with an NFC tag.

 Finally, you learned about working with various device sensors that may be in a device. You
learned how to detect sensors that are available as well as how to set up event listeners. You
learned how to read data from the sensors by overriding the onAccuracyChanged() and
 onSensorChanged() methods. Just as you learned that registering the events is important,
you also learned about the importance of unregistering sensor event listeners to not only stop
collecting data, but to save on wasting device power.

ptg16707593

This page intentionally left blank

ptg16707593

 14
 Managing Account Data

 Android has at one time or another been labeled as a difficult system to work with due to the
fragmentation of the system. While detractors to the platform are quick to point out the poten-
tial flaws of working with a myriad of devices and hardware platforms, part of the strength of
Android is the abundance of APIs and libraries available to back up, restore, and synchronize
data. This allows users to move from one device to another without missing their information
and applications. In this chapter, you learn about many of the Google-provided services as well
as how to integrate with other services to handle the transportation and synchronization of
user data.

 Getting Accounts

 Many Android devices require users to create or use an existing Google account to sign in
and start using them. Some devices run customized versions of Android and do not require a
Google account to be used; in these instances, the device provider implements their own user-
authentication process.

 When working with Android devices that have users sign in with a Google user account, you
can request some information from the user profile. This is accomplished by leveraging the
 AccountManager class and adding a couple of permissions to your application.

 Starting with the permissions, you will need to add the following to your application manifest
XML:

 <uses-permission android:name="android.permission.GET_ACCOUNTS"></uses-permission>
 <uses-permission android:name="android.permission.AUTHENTICATE_ACCOUNTS">
 </uses-permission>

 With the permissions in place, you can now use the AccountManager to retrieve the accounts
that are available on the device.

ptg16707593

188 Chapter 14 Managing Account Data

 Note

 The AccountManager gives you the ability to find all accounts on the device. This allows you
to work with more than a Google account, and will also allow you to work with multiple Google
accounts.

 The following shows a snippet of code that uses the AccountManager to create an object that is
then stored in a list and iterated over for a matching Google account:

 AccountManager myAccountManager = (AccountManager)
 getSystemService(ACCOUNT_SERVICE);
 Account[] list = myAccountManager.getAccounts();
 String googleAccount = "No Google Account";

 for(Account account: list) {
 if(account.type.equalsIgnoreCase("com.google")) {
 googleAccount = account.name;
 break;
 }
 }
 // set text view to googleAccount
 TextView tv = (TextView) findViewById(R.id.myTextView);
 tv.setText(googleAccount);

 Note that for demonstration purposes, a String named googleAccount is created and is later
populated during iteration through list . It is populated based on looking for a specific type of
account (in this case, com.google). This means that any account that is connected to Google
will be returned. Because this is just a sample snippet looking for a specific account, you should
be aware that some users may have more than one account tied to their device.

 Tip

 If you’re working with an Android emulator and are having trouble getting the snippet to work,
make sure you are using an emulator that was built using a target that supports the Google
APIs and is a minimum of API level 5.

 You can also use the getAccountsByType() and getAccountsByTypeAndFeatures()
methods to return objects that are more specific to what you need. If you are using an account
for authentication purposes, remember to check that the account exists in the list of returned
accounts. Failure to do so will result in the app requesting an authorization for an account that
doesn’t exist and will give an error of undefined.

 Android Backup Service

 The Android Backup Service is provided for applications that need to store a small amount of
user data. This is a great solution for saving preferences, scores, notes, and similar resources that
should be transferable between devices or during device restoration.

ptg16707593

189Android Backup Service

 Note

 The maximum storage you are allowed to use with the Android Backup Service is 1MB per
account per application. The service is also not intended for use as a data-synchronization
service, but instead as a means to restore application data.

 To use Android Backup Services, you must register your application with Google to receive a
Backup Service Key. At the time of writing, the URL for this is http://code.google.com/android/
backup/signup.html . Registration is a short process that requires you to read and agree to a
terms of service agreement with Google. After you read and accept the terms, you are asked to
provide the package name of your application. If you are developing multiple applications, you
need to agree to the terms and enter the package name for each application.

 After registering, you are given an XML element that you need to place in your application
Manifest XML as a child of the <application> element. The following demonstrates what a
generated key looks like:

 <meta-data android:name="com.google.android.backup.api_key"
 android:value="ABcDe1FGHij2KlmN3oPQRs4TUvW5xYZ" />

 While you are still working inside of the application manifest XML file, you need to add a
parameter of androidbackupAgent to the <application> element. The value of this property
should match the name you use for your backup agent. The following gives an example of
using MyBackupAgent for the name of the backup agent:

 <application android:label="MyApp" android:backupAgent="MyBackupAgent">

 Take specific notice of the naming convention used on the backup agent. Rather than using
camel-case to signify a variable, it uses upper-camel-case or PascalCase formatting. This is
because you need to create a class of that name and extend the BackupAgentHelper . It should
also implement an override for the onCreate() method. The following snippet shows a
demonstration class:

 import android.app.backup.BackupAgentHelper;
 import android.app.backup.FileBackupHelper;

 public class MyBackupAgent extends BackupAgentHelper {

 // set the name(s) of a preference file to backup
 static final String HIGH_SCORES_FILENAME = "scores";
 static final String INVENTORY_FILENAME = "inventory";

 // create a key to identify the backup data set
 static final String FILES_BACKUP_KEY = "mybackupfileskey";

 // allocate the helper and add it to the backup agent
 @Override
 void onCreate() {
 FileBackupHelper helper = new FileBackupHelper(this,

http://code.google.com/android/backup/signup.html
http://code.google.com/android/backup/signup.html

ptg16707593

190 Chapter 14 Managing Account Data

HIGH_SCORES_FILENAME, INVENTORY_FILENAME);
 addHelper(FILES_BACKUP_KEY, helper);
 }
 }

 To back up multiple files, two strings are created and set to the filenames that need to be
backed up. The strings are then passed as arguments to the FileBackupHelper() method. The
 FILES_BACKUP_KEY will be used when restoration is needed. Because the value is a “key,” it
does not have to be lower-, camel-, upper-, or mixed-case.

 Files are not the only resources you can back up from your application. If you want to back
up application preferences, you can use the SharedPreferencesBackupHelper . Using the
 SharedPreferencesBackupHelper is almost identical to using the FileBackupHelper . The
following class demonstrates how preferences are backed up:

 import android.app.backup.BackupAgentHelper;
 import android.app.backup.SharedPreferencesBackupHelper;

 public class MyBackupAgent extends BackupAgentHelper {
 // set the names of the preferences to back up
 // these should match values used in getSharedPreferences()

 static final String PREFS_OPTIONS = "optionsprefs";
 static final String PREFS_SCORES = "highscores";

 // create a key to use with your preferences backup
 static final String PREFS_BACKUP_KEY = "myprefsbackupkey";

 // allocate the helper and add it the backup agent
 void onCreate() {
 SharedPreferencesBackupHelper helper =

new SharedPreferencesBackupHelper(this, PREFS_OPTIONS, PREFS_SCORES);
 addHelper(PREFS_BACKUP_KEY, helper);
 }
 }

 To begin a backup process, you need to use the BackupManager and the dataChanged()
method to request a backup. After the request happens, the backup manager calls the
 onBackup() method and the backup will be performed. The following shows the snippet that
is used to create the backup request:

 public void requestBackup() {
 BackupManager bm = new BackupManager(this);
 bm.dataChanged();
 }

 Note that in the class where you place that, you also need to use import android.app.
backup.BackupManager . You should also remember that the backup service is not run “on

ptg16707593

191Using Google Drive Android API

demand,” but you should still call it whenever data is changed so that a user has a better
chance at having the most up-to-date information saved.

 Using Google Drive Android API

 Many Android users have a device that is compatible with Google services that gives them
access to Google Drive. Google Drive is a storage service that works with other Google services,
including Google Play Services. This allows users to store many gigabytes of data for free with
an option for them to buy more space if needed.

 As apps have become more sophisticated, users have started to increase their dependency on
being able to move and access data from wherever they are, on whatever device they have.
To make things more complex, users expect to be able to not only read data, they expect to
be able to write data and have that data be saved without having to worry about getting in
an elevator, taking a subway, or going through a tunnel. In each of these scenarios there is a
chance that connectivity will drop and a potential write or save operation will fail due to the
sudden loss of connectivity.

 The Google Drive Android API allows you to overcome these issues by offering access to user
data through an Android native picker, giving users transparent offline synchronization for
data to maintain write integrity, and by working with devices running Gingerbread and above.

 To get started implementing the API into your app, you need to register your app in the Google
Developers console. This is the console that allows access to Google Services and is separate
from the Play Store console (https://console.developers.google.com).

 If you are working with a new application that has not been registered in the Developers
Console, you can register your application and the Developers Console walks you through
creating and signing it.

 If you have already registered your app, you can select it and use the APIs & Auth menu to
select APIs and find Drive API in the list. This will then allow you to turn on access for your
application. Note that you will need to generate and sign your .apk file. If you need to submit
authorized requests, you have to add OAuth 2.0 credentials to your app and use the Developer
Console to generate a client ID.

 Once you have all of your credentials set up and access to the Drive API enabled, you are ready
to create a client in your Android application to start accessing data. This is done by building a
client in the onCreate() method of an Activity and connecting it in the onStart() Activity.
If a user has never authenticated when using the application, the onConnectionFailed()
callback method will be invoked. This allows the user to authorize access to their data from
within the app. The following snippet demonstrates the creation using the Builder pattern, the
connection of the client, and a snippet for the onConnectionFailed() callback method:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstance);

https://console.developers.google.com

ptg16707593

192 Chapter 14 Managing Account Data

 myGoogleApiClient = new GoogleApiClient.Builder(this)
.addApi(Drive.API)
.addScope(Drive.SCOPE_FILE)
.addConnectionCallbacks(this)
.addOnConnectionFailedListener(this)
.build();

 }

 @Override
 protected void onStart() {
 super.onStart();
 myGoogleApiClient.connect();
 }

 @override
 public void onConnectionFailed(ConnectionResult connectionResult) {
 if (connectionResult.hasResolution()) {
 try {

connectionResult
.startResolutionForResult(this, RESOLVE_CONNECTION_REQUEST_CODE);

 } catch (IntentSender.SendIntentException e) {
// The app cannot resolve the connection, add error logic here

 }
 } else {
 GooglePlayServicesUtil

.getErrorDialog(connectionResult.getErrorCode(), this, 0).show();
 }
 }

 If the user is prompted to authenticate their app, then the onActivityResult() method for
the activity will be called. This also passes back an argument that should be checked to match
 RESULT_OK ; if it does, the client will need to be connected again. The following snippet shows
an example of overriding the method to handle this scenario:

 @Override
 protected void onActivityResult(final int requestCode,

final int resultCode, final Intent data) {
 switch (requestCode) {
 // put your cases here
 case RESOLVE_CONNECTION_REQUEST_CODE:

if (resultCode == RESULT_OK) {
myGoogleApiClient.connect();

}
break;

 // put other cases or default here
 }
 }

ptg16707593

193Using Google Drive Android API

 After your connection has been made and authenticated, you can use the DriveFile interface
to read and write files. Due to the architecture of Drive, there are essentially two copies of every
file you work with—one that is created locally and one that is stored out in Drive. Using the
 DriveFile.open() method allows you to check locally for a file and, if it’s not found, attempt
to retrieve it from the Drive service.

 Note

 If you intend to retrieve files only for reading, you can use an InputStream . If you intend
to only save a file, you can use an OutputStream . If you intend to do both, you should use
 ParcelFileDescriptor because it can handle both reading and writing. You need to use a
 ParcelFileDescriptor when appending to a file because WRITE_ONLY truncates the file you
are writing to.

 When you retrieve a file from Drive, a resource called DriveContents will be available as a
temporary copy of the file you are working with. This resource does require that you verify that
it was able to get the file you want to work with. The following snippet shows a request made
for a file as well as the process of verifying the contents of the DriveContents resource:

 // either create a file object, or use Drive.DriveApi.getFile()
 // MODE_READ_ONLY signifies working with an InputStream
 file.open(myGoogleApiClient, DriveFile.MODE_READ_ONLY, null)
 .setResultCallback(contentsOpenedCallback);

 ResultCallback<DriveContentsResult> contentsOpenedCallback =
 new ResultCallback<DriveContentsResult>() {
 @Override
 public void onResult(DriveContentsResult result) {
 if (!result.getStatus().isSuccess()) {

// File cannot be opened, display appropriate message
return;

 }
 // set contents to the binary return
 DriveContents contents = result.getDriveContents();
 }
 };

 To read the binary contents that were just opened, you need to create a BufferedReader , a
 StringBuilder , and a String . When you are finished working with the file, remember to
close the file with either DriveContents.commit or DriveContents.discard . The following
snippet shows how to convert the binary data into a String as well as how to close the file:

 // add this snippet where you are working with the binary read
 DriveContents contents = result.getDriveContents();
 BufferedReader reader =
 new BufferedReader(new InputStreamReader(contents.getInputStream()));
 StringBuilder builder = new StringBuilder();

ptg16707593

194 Chapter 14 Managing Account Data

 String line;
 while ((line = reader.readLine()) != null) {
 builder.append(line);
 }
 // Create a String to house the contents
 String contentsAsString = builder.toString();
 // Perform logic with the string

 // The following will close the file
 contents.commit(mGoogleApiClient, null)
 .setResultCallback(new ResultCallback<Status>() {
 @Override
 public void onResult(Status result) {
 // handle based on result status
 }
 });

 Writing to files is similar to reading from them in that you need to retrieve and open the
file you want to write to, perform the write, and then close the file. Remember that you will
need to use a ParcelFileDescriptor when you are appending to a file rather than using an
 OutputStream . The following snippet demonstrates opening a file to work with, appending a
 String message to the file and then closing the file:

 // create a file object, use Drive.DriveApi.getFile(), or use DriveContents
 file.open(mGoogleApiClient, DriveFile.MODE_WRITE_ONLY, null)
 .setResultCallback(new ResultCallback<DriveContentsResult>() {
 @Override
 public void onResult(DriveContentsResult result) {
 if (!result.getStatus().isSuccess()) {

// File cannot be opened, display appropriate message
return;

 }
 DriveContents contents = result.getDriveContents();
 }
 });

 // append a string to the file that was opened
 try {
 ParcelFileDescriptor parcelFileDescriptor =

contents.getParcelFileDescriptor();
 FileInputStream fileInputStream =

new FileInputStream(parcelFileDescriptor.getFileDescriptor());
 // read to the end of the file
 fileInputStream.read(new byte[fileInputStream.available()]);

 // append to the file
 FileOutputStream fileOutputStream = new FileOutputStream(parcelFileDescriptor

ptg16707593

195Using Google Play Games Services

 .getFileDescriptor());
 Writer writer = new OutputStreamWriter(fileOutputStream);
 writer.write("Howdy World!");
 writer.flush();
 } catch (IOException e) {
 e.printStackTrace();
 }

 // close the file
 contents.commit(mGoogleApiClient, null)
 .setResultCallback(new ResultCallback<Status>() {
 @Override
 public void onResult(Status result) {

// handle based on response status
 }
 });

 Once a file has been closed, it will be flagged to synchronize with the Drive service. The
synchronization service is run automatically and will perform connectivity checks to ensure
that any files that need to be updated will complete when the network is available and that this
operation performs successfully.

 Using Google Play Games Services

 Google Play Games is a service that allows game developers to create achievements, track login
information, grant user permissions, and add a social aspect to gaming that allows you to
provide smoother and more addictive gameplay to your users. There is a lot to learn and cover
to implement all of the available services, and in this section we are going to focus on what has
been the most troublesome aspect of handling user data.

 There has long been an issue of figuring out how to provide a quality “save” experience for
users who get a new device or have multiple devices. When users only have one device, saving
game data is a manageable affair. As a developer, you could save to the local file system or
database and you were done.

 The problem with this strategy is that many users have more than one device. They may not
actually “own” multiple devices, but within the life of your app they may upgrade or change
devices. When this happens, a user does not want to spend more of their time doing what they
had already done previously to get back to where they were in your game.

 Developers have ended up using a variety of strategies to save, restore, and synchronize game
data between devices. Any implementation is better than none, but to ease this particular
burden, Google has provided a free service that can help you handle this process with Google
Play Games Services.

 To use Google Play Games Services, you will need to log in to the Google Play Developer
Console and add your name to it. This includes a description of your game as well as the

ptg16707593

196 Chapter 14 Managing Account Data

name of it. You also need to make sure you have credentials set up for your game. This usually
includes creating an OAuth client and linking it to the console.

 Google has written up a guide that you can follow, with detailed steps on how this initial setup
is done. It is also the best place to go to for reference because it is updated to reflect what
the Google Play Developer Console looks like and how it is used. Visit this guide at https://
developers.google.com/games/services/console/enabling .

 With your app registered in the console, you can now access all of the features of Google
Play Games Services. For examples on all of the features you can use, you should visit the
samples code repository that is hosted on GitHub at https://github.com/playgameservices/
android-basic-samples .

 Working with Saved Games

 To add game saving through Google Play Games Services, you need to provide only two things:

■ A binary blob of game data

■ Metadata containing Google-provided data as well as data you provide, which includes
an ID, name, description, last modified timestamp, time played, and a cover image

 Note that you are given 3MB of data for the binary data blob, and 800KB for your cover image.
The cover image is used to help the player visually understand what and where they were in
your game. The cover image should be something to not only show your game but should be
something to help entice the player to continue playing in case they haven’t played the game
in a while.

 The data and cover image are stored in the Drive account for the user playing the game. This
folder is hidden from them and contains the game blob and cover image. Due to the Drive
service being used, when you create your Google Services API client, you will need to include
Games and Drive as part of the client. The following shows an example of creating the API
using the builder method that allows access to Google Plus, Google Games, and Google Drive:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 // create Services API with Play, Games, and Drive access
 myGoogleApiClient = new GoogleApiClient.Builder(this)

.addConnectionCallbacks(this)

.addOnConnectionFailedListener(this)

.addApi(Plus.API).addScope(Plus.SCOPE_PLUS_LOGIN)

.addApi(Games.API).addScope(Games.SCOPE_GAMES)

.addApi(Drive.API).addScope(Drive.SCOPE_APPFOLDER)

.build();
 }

 In code, a game is referred to as a Snapshot . This is the combination of the required blob and
metadata for the saved game. To save the Snapshot , you need to obtain a reference to it, use

https://developers.google.com/games/services/console/enabling
https://developers.google.com/games/services/console/enabling
https://github.com/playgameservices/android-basic-samples
https://github.com/playgameservices/android-basic-samples

ptg16707593

197Using Google Play Games Services

the open() and writeBytes() methods to write current game data, and then use the
 commitAndClose() method to save the Snapshot . The following snippet shows you how
these methods are used to save a game:

 private PendingResult<Snapshots.CommitSnapshotResult>
 writeSnapshot(Snapshot snapshot,
 byte[] data, Bitmap coverImage, String desc) {

 // get the contents of the snapshot and write it
 snapshot.getSnapshotContents().writeBytes(data);

 // set the metadata change
 SnapshotMetadataChange metadataChange = new SnapshotMetadataChange.Builder()
 .setCoverImage(coverImage)
 .setDescription(desc)
 .build();

 // commit the snapshot
 return Games.Snapshots.commitAndClose(myGoogleApiClient, snapshot, metadataChange);
 }

 To load a saved game, you should use an asynchronous method to move the process from the
main thread. This can be done using AsyncTask with an override to the doInBackground()
method. You can then call the load() method:

 private byte[] mySaveGameData;

 void loadFromSnapshot() {
 // Consider using a loading message or widget here

 AsyncTask<Void, Void, Integer> task =
new AsyncTask<Void, Void, Integer>() {

 @Override
 protected Integer doInBackground(Void... params) {

/*
* Open the saved game using myCurrentSaveName
* using "true" as the third argument of open()
* will create a save game if one has not already been created

*/
Snapshots.OpenSnapshotResult result = Games.Snapshots

.open(myGoogleApiClient, myCurrentSaveName, true).await();

// did the open method work?
if (result.getStatus().isSuccess()) {
Snapshot snapshot = result.getSnapshot();
try {
// read the byte content of the saved game.
mySaveGameData = snapshot.getSnapshotContents().readFully();

ptg16707593

198 Chapter 14 Managing Account Data

} catch (IOException e) {
// Logging the IO error
Log.e(TAG, "Error while reading Snapshot.", e);

}
} else {
// Logging the status code error
Log.e(TAG, "Error while loading: " +

result.getStatus().getStatusCode());
}
return result.getStatus().getStatusCode();

 }

 @Override
 protected void onPostExecute(Integer status) {

// Close the loading message or progress dialog if used
// and update the UI

 }
 };
 task.execute();
 }

 If you do not want to implement your own design for handling game loading, you can use an
out-of-the-box solution that is provided by the Google Play Games Services. This is launched
by using two methods that call an Intent that displays any saved games the user has, and may
allow the user to delete or create a new saved game based on arguments passed to the methods.
The following snippet demonstrates how to show the Saved Games UI as well as how to use the
 onActivityResult() method to handle creating a new save or loading an existing one:

 // display the Saved Games UI
 // RC_SAVED_GAMES is set to an int to identify it
 private static final int RC_SAVED_GAMES = 1003;

 private void showSavedGamesUI() {
 // set number of saves to show
 int maxNumberOfSavedGamesToShow = 3;
 // args 3 and 4 represent allowAddButton and allowDelete
 Intent savedGamesIntent =

Games.Snapshots.getSelectSnapshotIntent(myGoogleApiClient,
"See Saved Games", true, true, maxNumberOfSavedGamesToShow);

 startActivityForResult(savedGamesIntent, RC_SAVED_GAMES);
 }

 // save a new game or load an existing one
 // start by creating a temp snapshot
 private String myCurrentSaveName = "snapshotTemp";

ptg16707593

199Summary

 // this callback is triggered after startActivityForResult() is called
 // from the showSavedGamesUI() method.

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent intent) {

 if (intent != null) {
 if (intent.hasExtra(Snapshots.EXTRA_SNAPSHOT_METADATA)) {

// load a snapshot
SnapshotMetadata snapshotMetadata = (SnapshotMetadata)
intent.getParcelableExtra(Snapshots.EXTRA_SNAPSHOT_METADATA);
// avoid hardcoding names, use the name from the snapshot
myCurrentSaveName = snapshotMetadata.getUniqueName();

// continue logic here to load the game data from the Snapshot

 } else if (intent.hasExtra(Snapshots.EXTRA_SNAPSHOT_NEW)) {
// Create a new snapshot, name it with a unique string
String unique = new BigInteger(281, new Random()).toString(13);
myCurrentSaveName = "snapshotTemp-" + unique;

// continue the create the new snapshot logic
 }
 }
 }

 If you need further references on how to implement this logic into your game, visit the package
docs at https://developers.google.com/android/reference/com/google/android/gms/games/
snapshot/package-summary . You can also view the “SavedGames” code sample at https://
github.com/playgameservices/android-basic-samples/tree/master/BasicSamples/SavedGames .
This sample also includes how to migrate data from the old Cloud Save service to the Saved
Games service that is part of the Google Play Games Services.

 Summary

 In this chapter, you learned the basics of working with account details by using the
 AccountManager . This was done by specifying a package name that matched some Google
accounts, and a name for the user account was retrieved. You also learned that there may be
multiple accounts on a device and that you should get them all and either return a list or allow
the user to choose which one to use.

 You also learned about the Android Backup Service. This service allows you to make small
backups that will restore user settings when they have to wipe, hard-reset, or set up a new
device. You learned that this is not a suitable service for data synchronization, but is a helpful
and free solution for minor data restoration needs.

https://developers.google.com/android/reference/com/google/android/gms/games/snapshot/package-summary
https://developers.google.com/android/reference/com/google/android/gms/games/snapshot/package-summary
https://github.com/playgameservices/android-basic-samples/tree/master/BasicSamples/SavedGames
https://github.com/playgameservices/android-basic-samples/tree/master/BasicSamples/SavedGames

ptg16707593

200 Chapter 14 Managing Account Data

 You learned about the Google Drive Android API that can be used to load files to and from a
device using Google Drive. You learned about the benefits of using this service because it allows
for a seamless integration for mobile users who are constantly moving in and out of data or
network range. You also learned how to read and write files using this API.

 Finally, you were shown a portion of the Google Play Games Services. These services offer
a lot of methods and libraries to help make game development easier. You learned how to
save games using a snapshot, how to load a game, and how to use the built-in UI solution for
performing both saves and loading games to a device.

ptg16707593

 15
 Google Play Services

 Google Play services is a collection of APIs provided from Google that help developers take
advantage of data, calculations, and methods to create better applications. This is done by
allowing you to tap into the vast data sets and communication assets that Google has inte-
grated into its many services.

 In this chapter, you learn how to add Google Play Services to your application, create a client
to communicate with the services, and gain exposure to some of the APIs that are bundled in
Google Play Services.

 Adding Google Play Services

 If you have never used Google Play Services in an application before, you need to do some
initial setup. You should start by opening the Android SDK manager and downloading the
most current version of the Google Play Services. If you do not see this in the manager, you
may need to scroll to the bottom of the list and expand the Tools section.

 If you are inside of Android Studio 1.3+, when you use the icon to open the SDK Manager,
the preferences window will open with Android SDK selected from the menu on the left. You
will then need to click the SDK Tools tab and click the checkbox next to it. Note that you may
receive a message that not all packages can be installed. When this happens, click the button to
launch the standalone SDK Manager, and then you should be able to check the box and down-
load the required packages.

 Note

 If you have already created an AVD to use for testing your application, make sure it supports
the Google APIs. If you use an AVD that doesn’t support the Google APIs, your application will
not function properly and may cause an ANR or crash at runtime.

 After you download Google Play Services, you are then ready to alter your application Gradle
file. Open the build.gradle file for your application module. This is located in your project’s

ptg16707593

202 Chapter 15 Google Play Services

 ApplicationDirectory/app/build.gradle . In the Dependencies section, add the following
line:

 dependencies {
 // other dependencies may be listed here
 compile 'com.google.android.gms:play-services:7.8.0'
 }

 Note that you should use the most current version available; in this example, the version 7.8.0
is used, but it will increment as newer versions of Google Play Services are released.

 After you make the edit, you need to re-sync your Gradle build file. This can be done by click-
ing the Sync Project with Gradle Files message that appears at the top of the editor screen.
If you do not see the banner, you can use the context menu and click Tools, Android, Sync
Project with Gradle Files.

 When the build finishes, you are ready to begin using Google Play Services in your application.

 If you have a large project with many imports and/or heavy framework usage, you may receive
an error when you attempt to compile. This is due to a limit of having only 65,536 methods
in your application. You can selectively compile just the portions of Google Play Services by
calling them as a dependency rather than using all of them, like so:

 // use this
 compile 'com.google.android.gms:play-services-fitness:7.8.0'
 // instead of this
 compile 'com.google.android.gms:play-services:7.8.0'

 Table 15.1 lists the currently available services.

 Table 15.1 Available Google Play Services

 Google Play Service Dependency

 Google+ com.google.android.gms:play-services-plus:7.8.0

 Google Account Login com.google.android.gms:play-services-identity:7.8.0

 Google Actions, Base Client Library com.google.android.gms:play-services-base:7.8.0

 Google App Indexing com.google.android.gms:play-services-appindexing:7.8.0

 Google App Invites com.google.android.gms:play-services-appinvite:7.8.0

 Google Analytics com.google.android.gms:play-services-analytics:7.8.0

 Google Cast com.google.android.gms:play-services-cast:7.8.0

 Google Cloud Messaging com.google.android.gms:play-services-gcm:7.8.0

 Google Drive com.google.android.gms:play-services-drive:7.8.0

 Google Fit com.google.android.gms:play-services-fitness:7.8.0

ptg16707593

203Using Google API Client

 Google Play Service Dependency

 Google Location, Activity
Recognition, Places

 com.google.android.gms:play-services-location:7.8.0

 Google Maps com.google.android.gms:play-services-maps:7.8.0

 Google Mobile Ads com.google.android.gms:play-services-ads:7.8.0

 Mobile Vision com.google.android.gms:play-services-vision:7.8.0

 Google Nearby com.google.android.gms:play-services-nearby:7.8.0

 Google Panorama Viewer com.google.android.gms:play-services-panorama:7.8.0

 Google Play Game services com.google.android.gms:play-services-games:7.8.0

 SafetyNet com.google.android.gms:play-services-safetynet:7.8.0

 Google Wallet com.google.android.gms:play-services-wallet:7.8.0

 Android Wear com.google.android.gms:play-services-wearable:7.8.0

 Using Google API Client

 The easiest way to connect to Google Play Services is to use the Google API Client. In previous
chapters, the Google API Client was used to establish connections using the builder pattern.
The builder pattern is preferred because it allows you to quickly add and remove services as well
as optimize the creation of the connections and resources needed.

 The following snippet is a refresher on how to use the builder pattern to create a
 GoogleApiClient :

 GoogleApiClient myGoogleApiClient = new GoogleApiClient.Builder(this)
 .addApi(Drive.API)
 .addScope(Drive.SCOPE_FILE)
 .addConnectionCallbacks(this)
 .addOnConnectionFailListener(this)
 .build();

 To complete a connection, not only must you add the API you want to use, but you must also
implement a callback interface for ConnectionCallbacks and OnConnectionFailedListener .
These are needed to protect the application from crashing when the services are unavailable or
when the device running the app does not support using Google services.

 There are three methods you can override in your Activity that allow you to place logic to deal
with connection, suspension, and failure. Each method gives you an opportunity to place your
logic and even recover from a potential error.

 If you encounter an error that triggers the onConnectionFailed() method, attempt to resolve
the error by calling the hasResolution() method on the ConnectionResult object. This
allows you to have the user fix what is wrong and attempt the connection again. If a resolution

ptg16707593

204 Chapter 15 Google Play Services

is not available, use GoogleApiAvailability.getErrorDialog() , which gives information
and a potential solution (such as updating Google Play Services on their device) to the connec-
tion error.

 Listing 15.1 demonstrates using the onConnected() , onConnectionSuspended , and
onConnectionFailed methods as well as building a dialog for the user to interact with
when an error occurs.

 Listing 15.1 Override Methods Used when Connecting to Google Play Services

 // set up variables used when connection failure occurs
 // requestCode to pass with activity - cannot be a negative number
 private static final int REQUEST_RESOLVE_ERROR = 1331;
 // tag for the error dialog fragment
 private static final String DIALOG_ERROR = "dialog_error";
 // set a boolean to track if error resolution is happening
 private boolean myResolvingError = false;

 @Override
 public void onConnected(Bundle connectionHint) {
 // the connection is good, add logic for success here
 }

 @Override
 public void onConnectionSuspended(int cause) {
 // there was a connection, but it has now failed
 // disable any components that rely on the connection working here
 }

 @Override
 public void onConnectionFailed(ConnectionResult result) {
 // the connection has failed, this may be for one or more of the
 // APIs you are attempting to use with the GoogleApiClient
 // is an error currently being resolved?
 if (myResolvingError) {
 // an error is already in process
 return;
 } else if (result.hasResolution()) {
 try {

myResolvingError = true;
result.startResolutionForResult(this, REQUEST_RESOLVE_ERROR);

 } catch (SendIntentException e) {
 // problem connecting to resolution intent, try connecting again

myGoogleApiClient.connect();
 }
 } else {
 // cannot use hasResolution(), call showErrorDialog() to build a dialog

ptg16707593

205Using Google API Client

 // and display contents of GoogleApiAvailability.getErrorDialog()
 showErrorDialog(result.getErrorCode());
 myResolvingError = true;
 }
 }

 private void showErrorDialog(int errorCode) {
 // create a fragment for the error dialog
 ErrorDialogFragment dialogFragment = new ErrorDialogFragment();
 // create a bundle to pass the error arguments
 Bundle args = new Bundle();
 args.putInt(DIALOG_ERROR, errorCode);
 // set the arguments into the dialogFragment and then show it
 dialogFragment.setArguments(args);
 dialogFragment.show(getSupportFragmentManager(), "errordialog");
 }

 // this is called from ErrorDialogFragment on dialog dismiss
 public void onDialogDismissed() {
 myResolvingError = false;
 }

 // the dialog fragment to display the error
 public static class ErrorDialogFragment extends DialogFragment {
 public ErrorDialogFragment() { }

 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 // get error code and return the dialog
 int errorCode = this.getArguments().getInt(DIALOG_ERROR);
 return GoogleApiAvailability.getInstance().getErrorDialog(

this.getActivity(), errorCode, REQUEST_RESOLVE_ERROR);
 }

 @Override
 public void onDismiss(DialogInterface dialog) {
 // on dismiss call onDialogDismissed to set myResolvingError to false
 ((MyActivity) getActivity()).onDialogDismissed();
 }
 }

 // user has resolved issue onActivityResult callback is then called
 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode == REQUEST_RESOLVE_ERROR) {

ptg16707593

206 Chapter 15 Google Play Services

 myResolvingError = false;
 // check if the error is now OK and that a connection has not
 // already been established or attempted
 if (resultCode == RESULT_OK) {

if (!myGoogleApiClient.isConnecting() &&
!myGoogleApiClient.isConnected()) {

myGoogleApiClientConnect();
}

 }
 }
 }

 The listing should be fairly well documented with inline comments; however, you should take
special note of the Boolean myResolvingError that is used to keep track of the connection
state. It should also be noted that Google Play Services have an ErrorDialogFragment already
defined so that you do not need to define it again.

 It can be easy to forget that a user may decide to “pocket” his device or rotate his screen in
the middle of a connection being established. When this happens, the Activity is restarted and
any connections may be left in a connecting state. By saving the value of the Boolean inside of
 onSaveInstanceState() , you can overcome this particular issue.

 The following shows how this can be saved in the onSaveInstanceState() method and
restored during the onCreate() method:

 private static final String STATE_RESOLVING_ERROR = "resolving_error";

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);
 outState.putBoolean(STATE_RESOLVING_ERROR, myResolvingError);
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 // the rest of your onCreate code should be here

 myResolvingError = savedInstanceState != null
 && savedInstanceState.getBoolean(STATE_RESOLVING_ERROR, false);
 }

 Now that you know how to create a connection using the GoogleApiClient , it is time to see
some examples of using Google Play Services.

ptg16707593

207Google Fit

 Google Fit

 Google Fit is part of Google Play Services. It allows you to use the sensors in a device mixed
with the computational heavy powers of Google to track the activity of a user. What makes
Google Fit great is that it can use information from all of the devices a person may have and
that are deemed the most accurate. This makes the only fitness “wearable” that a user needs the
one they usually always have with them.

 Note that Google Fit is actually a collection of APIs used to make the magic happen. The
following is a list of these APIs and what they are used for with Google Fit:

■ Sensors API : Gives access to raw sensor data from devices and companion devices

■ Recording API : Allows data to be stored and recorded with subscriptions

■ History API : Allows for batching fitness data by inserting, deleting, and reading it

■ Sessions API : Allows data to be grouped into sessions via metadata

■ Bluetooth Low Energy API : Allows compatibility with BLE devices, enabling data to be
interpreted and read from various BLE devices

■ Config API : Allows the use of custom data types and configuration settings used with
Google Fit

 Enable API and Authentication

 Some of the Google Play Services provided require more setup than just creating a connec-
tion client. Using Google Fit requires that you log in to your Google Developer Console
(https://console.developers.google.com) and either create a new project or choose one you have
already added. After you have created or chosen a project, you then need to enable the Fitness
API. This can be done by finding the APIs & Auth menu and then typing Fitness into the
search box. This then shows you the Fitness API page, which gives a brief description of what
it does. Clicking the Enable API button near the top of the page will turn the API on for your
project.

 Now that you have the API enabled, you need to manage the connection to it. This is done by
generating an OAuth 2.0 client for your Android app. This is done by clicking the Credentials
link that is under the APIs & Auth menu. This will then show you a page that allows you to
add your OAuth credentials. Before you click the Add Credentials link, make sure your project
is properly filled out for the OAuth Consent screen. Filling out this data can be done by using
the tabs at the top of the page. The OAuth Consent screen is shown to users when they initially
make a connection to your application with their data. This also gives you an opportunity to
add branding, policies, terms of service, and a Google+ page for users to see that allows them to
make sure they understand that the data really is going to the app they want and to know what
you will be doing with the information.

 After you fill out the information you want to provide, you can save your changes and then
go back to the Credentials tab and click the Add Credentials button on the page. This activates

https://console.developers.google.com

ptg16707593

208 Chapter 15 Google Play Services

a drop-down menu asking what type of credentials you would like to add. You should then
choose the OAuth 2.0 Client ID option.

 Next, you are asked to choose the application type. There are many options listed, but you
should click the option for Android because you will be using the API in your Android app.
When you click this option, the page shows options that pertain to creating a client for your
app. You can give the client ID a name and then pass in a signing-certificate fingerprint. If you
do not already have one, you will need to run the following command from your command
line or terminal:

 keytool -exportcert -alias androiddebugkey -keystore ~/.android/debug.keystore
-list -v

 Note that the entire sample should be on one line, but was broken into two lines here.
You should also correct the path to where your keystore file is. If you need to use the
 debug.keystore file, it is at the following location:

■ OS X and Linux : ~/.android/debug.keystore

■ Windows : %USERPROFILE%\.android\debug.keystore

 When the command is run, you are prompted for the password to your keystore (if you are
using the debug.keystore file, the password is empty, so you may press the Enter key to
continue when prompted for a password). You will then see the output of your certificate. This
contains quite a bit of data about the certificate. The piece of information you require is in the
Certificate Fingerprints section. You need to copy the values displayed in the SHA1 section.

 After typing or pasting your fingerprint into the required field in the Developer Console, you
need to add the package name for your application and then decide if you want to allow deep
linking from Google+. Deep linking allows clicks and shares of your application to automati-
cally launch or prompt for an install of your application based on the deep-link data.

 When you have made your decision, you can then click the Create button to generate your
OAuth 2.0 client. After a few moments, you should receive your OAuth 2.0 client ID.

 App Configuration and Connection

 Google Fit is part of Google Play Services. In the first section of the chapter you were shown
that you need to add a dependency to your application’s build.gradle file. As a reminder,
you need to add the following to the dependencies section of the app build.gradle file:

 dependencies {
 // other dependencies may be listed here
 compile 'com.google.android.gms:play-services:7.8.0'
 }

 You are now ready to create the GoogleApiClient and add the Fitness API as well as specify
the scopes you need to access. A list maintained by Google can be found at https://developers.
google.com/fit/android/authorization (note that the field names start with “FITNESS”). The

https://developers.google.com/fit/android/authorization
https://developers.google.com/fit/android/authorization

ptg16707593

209Nearby Messages API

following demonstrates an example of building a client and adding two scopes for access to
user data:

 myClient = new GoogleApiClient.Builder(this)
 .addApi(Fitness.API)
 .addScope(FitnessScopes.SCOPE_ACTIVITY_READ)
 .addScope(FitnessScopes.SCOPE_BODY_READ_WRITE)
 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this)
 .build();

 Once the client has been made, you can then start making the calls you need inside of the
 onConnected() method. This may include creating listeners so that you can display live data,
display heart rate, and even allow the user to manage their weight.

 Nearby Messages API

 One of the newer services that is provided by Google Play Services is the Nearby API. The
Nearby API allows devices on either the Android or iOS platform to exchange messages. This is
done by creating a publish-subscribe service that allows for small amounts of binary data to go
between the devices. Transmission is done through either Wi-Fi, Bluetooth, or even by an ultra-
sonic modem that uses the speaker and microphone to send and parse data.

 This means that you can now control the range of messages sent. Messages are no longer
limited by physical space and can reach as far as any device with an Internet connection, or as
close as within 5 feet (1.5 meters) of each other.

 Although offered as a Google service when using the messaging portion of the Nearby API,
having a Google Account is not required for the users of your application. However, to provide
unique-in-time pairing codes as well as maintain common tokens and API keys to authenticate
the application token, as a developer you will need to add this API in the Google Developers
Console and generate an SHA1 fingerprint of your certificate.

 Enabling Nearby Messages

 Open the Google Developer Console (https://console.developers.google.com) and either create a
new application or choose the existing application you will be working with. Once the project
has been created or selected, click the APIs & Auth menu and then the APIs link.

 If you do not see the Nearby Messages API in the list of available APIs, use the search box and
type nearby messages . A link to the API then appears. By clicking the API, you can use the
Enable API button to allow your application access to the API.

 Once the API has been enabled, you then need to get the SHA1 fingerprint of your keystore
certificate. This can be done by using the keytool command in your command line or termi-
nal. For precise instructions, refer to the section “Enable API and Authentication,” earlier in the
chapter.

https://console.developers.google.com

ptg16707593

210 Chapter 15 Google Play Services

 After obtaining your SHA1 fingerprint, click the Credentials link that is under the APIs & Auth
menu in the Google Developer Console. You should then click the Add Credentials button and
choose API Key from the drop-down menu.

 Of the options displayed, you should choose Android key, name the key, and then click the
Add Package Name and Fingerprint button. Enter in your application package name and pass
in the SHA1 fingerprint and then click the Create button. This processes and generates your
API key.

 After generating the API key is complete, you need to make some modifications to your
Android application. The first thing you need to do is add a Google Play Services dependency
to the application module of your project. Open up the build.gradle file of your app and
make sure you add the call to the dependencies section as follows:

 dependencies {
 // other files
 compile 'com.google.android.gms:play-services:7.8.0'
 }

 Next, you need to add a meta-data element that contains your generated API key to your
application manifest XML. This element can be added anywhere inside of the <application>
element. It should contain both a name and value property and look similar to the following:

 <meta-data
 android:name="com.google.android.nearby.messages.API_KEY"
 android:value="GENERATED_API_KEY_GOES_HERE" />

 The next thing you need to configure is your GoogleApiClient . This only requires that you
add the Nearby Messages API. The following shows a sample client built using the builder
method:

 myGoogleApiClient = new GoogleApiClient.Builder(this)
 .addApi(Nearby.MESSAGES_API)
 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this)
 .build();

 Sending and Receiving Messages

 The Nearby Messages API allows small payloads of data to be passed through a publisher and
subscriber model. When a device wants to connect to another device, it sends out a small
payload of data as a message using either Bluetooth or ultrasonic transmissions to any devices
near it that are listening. This makes the sender the publisher and the listeners the subscribers.
When tokens are received, they are then sent to the server for validation. If the validation is
successful, a connection is created and the subscription process is complete.

ptg16707593

211Nearby Messages API

 Note

 The Nearby Messages API really does live up to its name. Note that it is not called the Nearby
Video Streaming or Nearby Photo Sharing service. Transmitting large media files is expensive
in both time and battery cost and will only end up aggravating users. Keep to using it for data
payloads that are 3KB or less.

 To publish a message, you need to create a message object that contains a byte array and
then pass it using the Nearby.Messages.publish() method. The following example shows a
snippet of this being done:

 message = new Message(myByteArray);
 Nearby.Messages.publish(myGoogleApiClient, message)
 .setResultCallback(new ErrorCheckingCallback("publish()"));

 From this snippet, notice that a callback method is used to pass back an error with a String
value of "publish()" to let you know that something went wrong when you attempted to
publish. The use of a ResultCallback is required so that you can keep a status on the success
or failure of your broadcast. The following status codes may be passed to help you determine
what happened if something goes wrong:

■ APP_NOT_OPTED_IN : The user has not granted permission to use Nearby.Messages .

■ BLE_ADVERTISING_UNSUPPORTED : The client made a request using BLE_ONLY and the
device does not support BLE.

■ BLE_SCANNING_UNSUPPORTED : The client made a scanning request using BLE_ONLY and
the device does not support BLE.

■ BLUETOOTH_OFF : The client made a request that requires Bluetooth and it is currently
disabled.

■ TOO_MANY_PENDING_REQUESTS : There are more than five PendingIntents triggered
from the app to Messages#subscribe .

 To subscribe to messages from a publisher, you need to create an instance of MessageListener
and use Nearby.Mesasges.subscribe() . The following snippet shows an example of this:

 messageListener = new MessageListener() {
 @Override
 public void onFound(final Message message) {
 // logic for handling the message payload
 }
 };

 Nearby.Messages.subscribe(myGoogleApiClient, messageListener)
 .setResultCallback(new ErrorCheckingCallback("subscribe()"));

ptg16707593

212 Chapter 15 Google Play Services

 Similar to when publishing messages, when subscribing to messages, you must use a
 ResultCallback . In the previous example, a string was passed to help identify where an error
occurred. The same status codes may also be passed here that are passed when publishing.

 Listing 15.2 shows a larger example of setting up a client, publishing, and subscribing using
Nearby Messages.

 Listing 15.2 Publishing and Subscribing in an Activity

 @Override
 protected void onStart() {
 // set up a connection to services unless already connected
 super.onStart();
 if (!myGoogleApiClient.isConnected()) {
 myGoogleApiClient.connect();
 }
 }

 @Override
 protected void onStop() {
 if (myGoogleApiClient.isConnected()) {
 // save some battery by using unpublish/unsubscribe
 Nearby.Messages.unpublish(myGoogleApiClient, myMessage)

.setResultCallback(new ErrorCheckingCallback("unpublish()"));
 Nearby.Messages.unsubscribe(myGoogleApiClient, myMessageListener)

.setResultCallback(new ErrorCheckingCallback("unsubscribe()"));
 }
 myGoogleApiClient.disconnect();
 super.onStop();
 }

 // GoogleApiClient connection callback
 @Override
 public void onConnected(Bundle connectionHint) {
 Nearby.Messages.getPermissionStatus(myGoogleApiClient).setResultCallback(
 new ErrorCheckingCallback("getPermissionStatus", new Runnable() {

@Override
public void run() {
publishAndSubscribe();

}
 })
);
 }

 // onActivityResult is called when a button tap occurs in the
 // Nearby permission dialog
 @Override

ptg16707593

213Nearby Messages API

 protected void onActivityResult(int requestCode, int resultCode,
Intent data) {

 super.onActivityResult(requestCode, resultCode, data);
 if (requestCode == REQUEST_RESOLVE_ERROR) {
 mResolvingError = false;
 if (resultCode == RESULT_OK) {

// no errors, or permission issues, time to publish/subscribe
publishAndSubscribe();

 } else {
// either an error or permission denial happened, see resultCode
showToast("Failed to resolve error with code " + resultCode);

 }
 }
 }

 private void publishAndSubscribe() {
 // when GoogleApiClient is connected subscription to nearby messages
 // happens automatically. However, this code may execute more than once
 // during the activity lifecycle, these requests to subscribe() that use
 // the same MessageListener will be ignored

 Nearby.Messages.publish(myGoogleApiClient, myMessage)
 .setResultCallback(new ErrorCheckingCallback("publish()"));
 Nearby.Messages.subscribe(myGoogleApiClient, myMessageListener)
 .setResultCallback(new ErrorCheckingCallback("subscribe()"));
 }

 // this ResultCallback displays a toast when errors occur
 // it also displays the Nearby opt-in dialog when needed

 private class ErrorCheckingCallback implements ResultCallback<Status> {
 private final String method;
 private final Runnable runOnSuccess;

 private ErrorCheckingCallback(String method) {
 this(method, null);
 }

 private ErrorCheckingCallback(String method, @Nullable Runnable runOnSuccess) {
 this.method = method;
 this.runOnSuccess = runOnSuccess;
 }

 @Override
 public void onResult(@NonNull Status status) {
 if (status.isSuccess()) {

ptg16707593

214 Chapter 15 Google Play Services

Log.i(TAG, method + " succeeded.");
if (runOnSuccess != null) {
runOnSuccess.run();

}
 } else {

// currently the only resolvable error is that the device is not opted
// in to Nearby. Starting the resolution displays an opt-in dialog
if (status.hasResolution()) {
if (!mResolvingError) {
try {
status.startResolutionForResult(MainActivity.this,
REQUEST_RESOLVE_ERROR);

mResolvingError = true;
} catch (IntentSender.SendIntentException e) {
showToastAndLog(Log.ERROR, method +
" failed with exception: " + e);

}
} else {
// This is reached on init due to both publishing and
// subscribing at the same time. Instead of informing the user
// with a Toast, just log that it happened
Log.i(TAG, method + " failed with status: " + status
+ " while resolving error.");

}
} else {
showToastAndLog(Log.ERROR, method + " failed with : " + status
+ " resolving error: " + mResolvingError);

}
 }
 }
 }

 Remember that when publishing or subscribing communication actively, your device can use
2–3 times the normal battery rate. This makes it imperative that you call the unpublish() and
 unsubscribe() methods in the onPause() and/or onStop() methods of your app.

 It is also recommended that you are clear to users about what data is going to be broadcast so
that they don’t feel like their privacy is being threatened and that malicious users may be inter-
cepting data they deem sensitive.

 Summary

 In this chapter, you learned about Google Play Services. You learned how to create a client in
your application to connect to the services as well as how to add the needed dependencies.

ptg16707593

215Summary

You also learned that some of these services require some setup within the Google Developer
Console.

 You learned that services can be included individually or as a complete bundle of all services. It
may seem like including all of them is a good idea; however, you were informed that this will
limit the number of methods you can use, including methods used in included libraries.

 Finally, you were given examples of integrating with two of the many Google Play Services.
You were shown how to enable the API in the Developer Console and connect to each service,
and you were given some sample snippets of how to begin using these services in your
application.

ptg16707593

This page intentionally left blank

ptg16707593

 16
 Android Wear

 Android Wear was introduced in June 2014 as a way of changing how people use their mobile
devices. Google initially advertised the platform as an extension of a user’s mobile device,
giving the user “glanceable” notifications that would inform without taking a person away
from the experience they were currently involved in. In this chapter, you learn about the
design and creation of notifications and applications for Android Wear.

 Android Wear Basics

 Android Wear is a fascinating extension of the Android family. Android Wear devices run a
modified version of Android that works with many of the same classes, packages, and sensors
that are in other Android devices. As a developer, there are some differences you should be
aware of that will help you deliver quality apps. The following is a list of considerations you
should keep in mind when creating your app:

■ Wear devices have much smaller batteries than other Android devices.

■ Leaving sensors in a data collection mode will impact battery life.

■ Not all Wear devices have the same amount of pixels or pixel density.

■ Not all users will have a watch with a square or round face.

■ Not all Wear devices contain the same sensors.

■ Tasks should be completed in 5 seconds or less.

 Each of the items in this list is something that can have a profound impact on the user install-
ing, keeping, or killing the app with a bad rating in the Play store.

ptg16707593

218 Chapter 16 Android Wear

 Tip

 As a general rule, whenever there is a Google service available, you should leverage it to mini-
mize sensor collection impact and to increase battery life. For example, using the Google Fit API
for pedometer data can save battery life by determining if data from a connected Android device
(such as a mobile phone) is as accurate as or more accurate than a Wear device.

 Android Wear devices were created to be slightly different to allow users to choose a device that
matches their personal style and use case. As listed previously, some considerations need to be
taken when you are working with these different styles.

 To help you make better apps, the Wearable UI Library can be used in creating widgets, such as
cards, as well as utility classes, such as WatchViewStub , to help you invoke the correct layout
XML file. The Wearable UI Library should be included by default when creating a new Wear
project with Android Studio, but if you are working with a legacy project or not using Android
Studio, you can add the following to your gradle.build file in your wear module:

 dependencies {
 // other dependencies
 compile 'com.google.android.support:wearable:+'
 compile 'com.google.android.gms:play-services-wearable:+'
 }

 Screen Considerations

 What makes Android Wear different from standard Android devices is the device screen. Just
like with other Android devices, you should refrain from using exact pixel numbers. This has
everything to do with different manufacturers using different pixel densities as well as different
resolutions for each device. You can, and should, use DP values because these will scale appro-
priately using a calculated measurement.

 Another difference between Wear devices and Android devices is that Wear devices are
currently available in two basic shapes: round and square. Knowing this, you are given the
opportunity to create two layouts for your application. It is not necessary to create two separate
layouts; however, the user experience may be less than ideal because the layout of a square face
will be cropped when viewed on a round watch face. This potential problem can be mitigated
by using either the WatchViewStub class or a BoxInsetLayout .

 The WatchViewStub class detects the watch face shape and inflates the correct layout. This
class is automatically invoked at runtime and is able to inflate the correct layout based on the
attributes and values placed in your main activity layout XML. The following shows a snippet
of XML that will inflate different layouts based on the screen shape of the device:

 <android.support.wearable.view.WatchViewStub
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"

ptg16707593

219Screen Considerations

 android:id="@+id/watch_view_stub"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:rectLayout="@layout/activity_wear_rect"
 app:roundLayout="@layout/activity_wear_round">
 </android.support.wearable.view.WatchViewStub>

 This snippet of code uses two properties that contain values that help the application find and
inflate the proper layout XML file. The first property is app:rectLayout , and it contains a
value of @layout/activity_wear_rect . This means that when the screen is determined to be
a square or rectangle, the file res/layout/activity_wear_rect.xml will be used for the UI
layout.

 Similarly, the app:roundLayout property contains a value of @layout/activity_wear_round ,
which will use the file res/layout/activity_wear_round.xml to render the UI layout for
Wear devices that have a round face.

 A drawback to using this particular method of screen layout handling is that you are unable to
directly access your app view until the layout has been inflated. This can be overcome by using
 setOnLayoutInflatedListener() on the WatchViewStub object to create a listener that
will execute code when the detection and layout inflation has been completed. The following
snippet shows how this can be accomplished in the onCreate() method of your Activity:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_wear);

 WatchViewStub stub = (WatchViewStub) findViewById(R.id.watch_view_stub);
 stub.setOnLayoutInflatedListener(new WatchViewStub.OnLayoutInflatedListener() {
 @Override public void onLayoutInflated(WatchViewStub stub) {

// the view has been inflated and can now be used
TextView tv = (TextView) stub.findViewById(R.id.text);
// rest of your code

 }
 });
 }

 If you decide that you do not want to work with the added complexity of maintaining two
layouts, you can use a single layout that leverages BoxInsetLayout . Also note that starting a
new Wear project in Android Studio will create a layout that includes this layout element by
default.

 The BoxInsetLayout class extends a FrameLayout that places the main layout area inside
of the viewable area of the screen shape. Gravity is added to handle the placement of the
included layout widgets. The following snippet demonstrates how this is achieved:

ptg16707593

220 Chapter 16 Android Wear

 <android.support.wearable.view.BoxInsetLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:background="@drawable/wear_background"
 android:layout_height="match_parent"
 android:layout_width="match_parent"
 android:padding="15dp">

 <FrameLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="5dp"
 app:layout_box="all">

 <TextView
android:gravity="center"
android:layout_height="wrap_content"
android:layout_width="match_parent"
android:text="@string/hello_text"
android:textColor="@color/black" />

 <ImageButton
android:background="@null"
android:layout_gravity="bottom|left"
android:layout_height="50dp"
android:layout_width="50dp"
android:src="@drawable/btn_left" />

 <ImageButton
android:background="@null"
android:layout_gravity="bottom|right"
android:layout_height="50dp"
android:layout_width="50dp"
android:src="@drawable/btn_right" />

 </FrameLayout>
 </android.support.wearable.view.BoxInsetLayout>

 In this snippet example, the gravity is set on the TextView and ImageButton elements in
order to align them properly to the screen. You should also note that values are set in dp to
allow them to scale based on the pixel density of the device rendering the layout.

 To help with the visual layout of applications, Google provides a UI kit that can be down-
loaded in either PDF or Adobe Illustrator format from https://developer.android.com/design/
downloads/index.html . Note that there are other design guidelines there, so look for the Wear
section.

https://developer.android.com/design/downloads/index.html
https://developer.android.com/design/downloads/index.html

ptg16707593

221Debugging

 These design assets are crucial for making quality apps that will match the built-in styles that
ship with Android Wear. They also provide the layout specifications used for button, image,
text, and even card placement and padding.

 Debugging

 Just like when you create an Android app, being able to run, test, and debug your Wear appli-
cation is essential. There are two ways to get this accomplished. You can use either an actual
Wear device or an emulator.

 Connecting to an Emulator

 Developers who have access to physical devices will always have the edge when it comes to
developing Wear apps. This is because they have greater access to device functionality, real-
world use, and extra sensor data. However, not having a device does not automatically preclude
you from developing Wear applications. Emulators are provided for both square- and round-
faced devices.

 To create a Wear emulator, you need to open the AVD Manager. If you are using Android
Studio, you can either use the icon shortcut or click Tools, Android, AVD Manager.

 When the AVD Manager opens, click Create Virtual Device; then, from the window that
appears, choose the size, shape, resolution, and pixel density you would like to emulate. By
default, some hardware profiles are available for selection. If you want, you can also choose to
create your own by clicking the New Hardware Profile button.

 Once you have either created a new profile or chosen an existing one, click the Next button.
The next window allows you to choose the version of Android you want installed on the
emulated Wear device.

 Note

 If you are missing a version that you believe is available, click the Cancel button and close the
AVD Manager window. Then, open the SDK Manager and make sure you are up to date and
have selected the SDK files for the version of Android Wear you want to develop with.

 After choosing the version you want to work with, clicking the Next button takes you to a
summary window that allows you to make any last-minute changes and to review the selected
options for the emulator. If you are happy with the results, you can click the Finish button to
create the Wear emulator.

 Once it has been created, launching a Wear emulator is the same as launching an Android
emulator. You can either run a Wear application from Android Studio and choose the Wear
emulator device as the target, or you can launch the device from the AVD Manager window by
clicking the Play action button.

ptg16707593

222 Chapter 16 Android Wear

 Now at this point, you have an emulator that runs an application; however, it will not offer full
functionality until you have paired the emulator with an Android device. To do this, you need
to install the Android Wear app from the Google Play store on your Android device.

 Next, you should connect your device through USB to your computer. Note that your Android
device must have debugging enabled by having Developer Mode enabled. Once connected, you
should then forward the communication port for your emulator to your Android device. This
command must be run every time you connect your Android device to your computer; it is
done by using the following adb command from a command line or terminal:

 adb -d forward tcp:5601 tcp:5601

 You then need to open the Android Wear app on your Android device and connect to the
emulator. This is done by choosing to pair with a new watch and then using the menu in the
upper-right corner to select Pair with Emulator.

 When you are connected, you can then click the menu icon in the top right of the Android
Wear application and select Try Out Watch Notifications. Note that the text in this menu may
change, but there will be an option to view or test notifications. To confirm that the emulator
and device are working, you can try sending a notification to the emulator. If everything is set
up properly, you should see the notification on the emulator. Figure 16.1 shows a screenshot
taken while testing a notification on a Wear emulator.

 Figure 16.1 This sample notification was sent from a connected phone to the emulator.

 Connecting to a Wear Device

 The first step to debugging a Wear device is to enable debugging via the Developer Options on
the device. This menu is initially hidden; however, it can be enabled by going to the Settings
of the device and then opening the About option. This displays information about your device.
In the same way that you unlock the Developer Options menu on Android tablets and phones,

ptg16707593

223Debugging

you need to tap on Build Number seven times. You can then swipe away the About screen, and
you should see a new menu option below About called Developer Options.

 You may then be able to toggle Debug over Bluetooth to true. If it is grayed out, you first need
to enable ADB Debugging followed by enabling Debug over Bluetooth.

 Similar to working with a Wear emulator, you need an Android device with debugging enabled
that’s connected to your computer through USB in order complete the debugging setup. The
difference is that instead of first enabling debugging over Bluetooth in the Android Wear app
and then using a port forward with the adb command, you open the Android Wear app and
click the gear icon in the upper left to open the Settings menu.

 On the Settings page, you need to scroll to the bottom and select your Wear device for the
Device to Debug item in the Debugging over Bluetooth section as well as enable the slider for
the Debugging over Bluetooth item. The text in the section should change to “Host: discon-
nected” and “Target: connected” if the Wear device is configured for Bluetooth debugging.

 To connect the host, you need to run the following adb commands with your Android device
connected via USB and with USB debugging enabled:

 adb forward tcp:4444 localabstract:/adb-hub
 adb connect localhost:4444

 When the second command is executed, the text inside of the Debugging over Bluetooth
section should now show “Host: connected.” Figure 16.2 shows the settings window of an
Android device connected to a Moto 360 Android Wear device with Bluetooth debugging
enabled and connected.

 Figure 16.2 The Wear device is selected, and Bluetooth
debugging is enabled and connected on both the Wear and
Android devices.

ptg16707593

224 Chapter 16 Android Wear

 Note that once the devices are connected, you need to allow debugging from the computer
to your Wear device. The screen on your Wear device changes to give you the option to allow
debugging, to cancel debugging, or to trust the device that is currently connected. Choosing
to trust the connected device allows you to skip the dialog when you connect; however, you
should still use caution when adding a permanent connection.

 Communicating with Android Wear

 Now that you are connected and can debug your app from either an emulator or device, you
need to start sending information between the Wear device and your companion Android
device. In order to provide the best experience possible, you may want to include the Android
support library, Google Play Services, and the Wearable UI support library. These dependencies
should be added to the build.gradle of the app module.

 Note

 If you are creating a client by using GoogleApiClient and adding the Wearable API along with
other APIs, you may run into client connection errors on devices that do not have the Android
Wear app installed. You can avoid these errors by using the addApiIfAvailable() method
and passing the Wearable API so that the missing API can be gracefully handled by your client.

 Notifications, actions, and data can be passed back and forth between a Wear device and an
Android device. Much of this is handled by Google Play Services, and also requires the installa-
tion of the Android Wear application on the Android device. Let’s look at how information can
be displayed and how data is transferred between devices.

 Notifications

 By default, notifications are automatically bridged to Wear devices. For many, this is a major
reason to use a Wear device because it allows users to receive notifications quickly that they
may otherwise miss or be interrupted by when using their phone. However, something that
makes notifications different for Wear devices is that they are able to have custom actions
attached.

 A standard notification needs to be built using an instance of NotificationCompat.Builder .
The following snippet shows a notification being built and sent with an Intent through the
 NotificationManager :

 int notificationId = 007;
 Intent viewIntent = new Intent(this, ViewEventActivity.class);
 viewIntent.putExtra(EXTRA_EVENT_ID, eventId);
 PendingIntent viewPendingIntent =
 PendingIntent.getActivity(this, 0, viewIntent, 0);

ptg16707593

225Communicating with Android Wear

 // create notification using support library
 NotificationCompat.Builder notificationBuilder =
 new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.ic_event)
 .setContentTitle(eventTitle)
 .setContentText(eventLocation)
 .setContentIntent(viewPendingIntent);

 // set up instance of NotificationManager service
 NotificationManagerCompat notificationManager =
 NotificationManagerCompat.from(this);

 // Use notify() to build the notification and send
 notificationManager.notify(notificationId, notificationBuilder.build());

 When this notification appears on the Wear device, the specified PendingIntent is trig-
gered by the user swiping the notification to the left and then tapping the Open button. This
will then open the PendingIntent used in the setContentIntent() that was added when
the notification was built. However, this does not open the notification on the Wear device;
instead, it opens it on the handheld device.

 Just like with standard device notifications, you can specify another action by using the
 addAction() method to the NotificationBuilder . The addAction() method allows you
to set an icon (drawable), a description (String), and an Intent to launch when tapped. By
adding to the previous snippet, the notificationBuilder includes the following:

 // use addAction() to add
 NotificationCompat.Builder notificationBuilder =
 new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.ic_event)
 .setContentTitle(eventTitle)
 .setContentText(eventLocation)
 .setContentIntent(viewPendingIntent);
 .addAction(R.drawable.ic_menu_share,

getString(R.string.share), sharePendingIntent);

 If you have an action that you only want visible on a Wear device, you need to create an Intent
and an action to use, and then use the extend() method and pass WearableExtender with
the action attached to it via the addAction() method. The following snippet demonstrates this
in action:

 // create the intent used for the reply action
 Intent actionIntent = new Intent(this, ActionActivity.class);
 PendingIntent actionPendingIntent =
 PendingIntent.getActivity(this, 0, actionIntent,

PendingIntent.FLAG_UPDATE_CURRENT);

ptg16707593

226 Chapter 16 Android Wear

 // create the action that will trigger on tap
 NotificationCompat.Action action =
 new NotificationCompat.Action.Builder(R.drawable.ic_action,

getString(R.string.label), actionPendingIntent)
 .build();

 // create the notification, attach the action, and build
 Notification notification =
 new NotificationCompat.Builder(mContext)
 .setSmallIcon(R.drawable.ic_message)
 .setContentTitle(getString(R.string.title))
 .setContentText(getString(R.string.content))
 .extend(new WearableExtender().addAction(action))
 .build();

 // remember to send notifications via NotificationManagerCompat

 This snippet of code completes the build of the notification object, so you do not have to do
this when you call the notify() method to display the notification. With this snippet, you
have created an action that only appears on a Wear device and not on the phone or other
device to which it is connected.

 Sending Data

 To optimize the process of sending information between devices, the Wearable Data Layer API
has several components that are used specifically for Wear devices. The following is a list of
objects and services that are part of the API:

■ DataItem : Object that stores data to be synced between handheld and wearable devices.

■ Asset : Object that stores binary blob data; assets will be automatically cached to improve
Bluetooth performance.

■ DataListener : Used for determining when data layer events are in the foreground; note
that it will only work when your app is in the foreground.

■ WearableListenerService : When not working exclusively in the foreground,
 WearableListenerService should be extended, allowing the system to control the
lifecycle and data binding.

■ ChannelApi : This API is useful for transferring files that are large, such as movies, music,
and other media files. Use of the ChannelApi allows you to transfer files without creating
a container file first and then synchronizing the data.

■ MessageApi : Small payload messages use the MessageApi . These are messages such as
media player commands and one-way directives.

ptg16707593

227Communicating with Android Wear

 Like with other Google Play Services, you need to create a client to access the Wearable Data
Layer. The following snippet demonstrates the minimum code needed to create and connect
a client:

 GoogleApiClient myGoogleApiClient = new GoogleApiClient.Builder(this)
 .addConnectionCallbacks(new ConnectionCallbacks() {

@Override
public void onConnected(Bundle connectionHint) {
Log.d(TAG, "onConnected: " + connectionHint);
// Data Layer ready for use

}
@Override
public void onConnectionSuspended(int cause) {
// log the cause of connection pause
Log.d(TAG, "onConnectionSuspended: " + cause);

}
 }).addOnConnectionFailedListener(new OnConnectionFailedListener() {

@Override
public void onConnectionFailed(ConnectionResult result) {
// log reason for connection failure
Log.d(TAG, "onConnectionFailed: " + result);

}
 }).addApi(Wearable.API).build();

 The process for building the client uses the builder pattern to create the client and includes
the onConnected() , onConnectionSuspended() , and onConnectionFailed() methods.
Depending on how you want your application to work and what messaging information you
are planning to pass back and forth, you need to insert your code into the onConnected()
method where the comment Data Layer ready for use is.

 When sending messages with the MessageApi , you can choose a specific node or available
connections between the Wear and connected device, or you can broadcast to all of them.
Specifying the node and capabilities creates a more streamlined service, but will require extra
implementation to handle the hand-off between different nodes (such as Bluetooth and Wi-Fi
switching on and off).

 The following snippet of code shows you how to find all available nodes and return them in a
 HashSet of String s that can then be used for sending a message:

 private Collection<String> getNodes() {
 HashSet<String> results = new HashSet<String>();
 NodeApi.GetConnectedNodesResult nodes =

Wearable.NodeApi.getConnectedNodes(myGoogleApiClient).await();
 for (Node node : nodes.getNodes()) {
 results.add(node.getId());
 }
 return results;
 }

ptg16707593

228 Chapter 16 Android Wear

 For a full example of sending, receiving, and working with Android Wear, see the official
sample code available at https://github.com/googlesamples/android-FindMyPhone/ .

 Summary

 In this chapter, you learned about Android Wear and when Wear devices were introduced.
You were also introduced to the concepts Google has set forward to create apps that match
with the purpose of using a Wear device. You learned that similarly to Android devices, Wear
devices come in different shapes and sizes, including watch face shapes. You learned how
to provide different layout files to match the different shapes, as well as how to leverage the
 BoxInsetLayout to make your layout scale to be displayed on both shapes of watch faces.

 You also learned how to create an emulator for Android Wear by using the AVD Manager as
well as how to connect to the emulator and enable debugging to work with data from your
actual Android device. You were then shown how to enable Bluetooth debugging through the
Developer Options on the Wear device.

 You also learned about extending notifications to Wear devices and how to customize the
messages to only appear on the Wear device. You then were given a brief overview of the APIs
and objects that can be used to synchronize and send data between the connected and Wear
devices.

https://github.com/googlesamples/android-FindMyPhone/

ptg16707593

 17
 Google Analytics

 As the mobile device market gains more developers, the need to analyze and formulate a plan
for a successful app is more important than ever. Previously, testing and tuning an app relied
heavily on direct user feedback, focus groups, and user reviews. As part of your developer tool
belt, you can integrate Google Analytics and find out where your app falls down and where
users are struggling.

 Adding Google Analytics

 Google Analytics is a service provided by Google that works on multiple platforms. Web devel-
opers use Google Analytics to monitor the visits and purchases made by users. Now mobile
developers using Android or iOS can take advantage of Google Analytics in their apps.

 Before we get too far into the process, you first need to enable Google Services for the app.
This can be done by visiting https://developers.google.com/mobile/add and using the wizard to
generate your configuration file.

 If you have not already added your app to the Google Developer Console, you can use this
wizard to create a new app and specify the Android package name for your app. While using
the wizard, you will also be asked to choose or create a new analytics account to track and
report data. When you are finished either choosing an account or creating one, make sure to
generate your configuration file. This will download a file named google-services.json to
your computer.

 When the file has been generated and downloaded, you need to move or copy it into the app
folder of your Android project. Because your installation of Android Studio and your project
directory may vary, you need to locate the /app folder and place the google-services.json
file in it.

 Once you copy your configuration file, you need to make an edit to the top-level
 build.gradle file of your project. You need to add the following dependency:

 classpath 'com.google.gms:google-services:1.4.0-beta3'

https://developers.google.com/mobile/add

ptg16707593

230 Chapter 17 Google Analytics

 Note that this version is current as of this writing, and you need to update to the latest version
to take advantage of any new features and functionality. You also need to make some additions
to your app module build.gradle file, which consists of adding the following lines:

 // other plugins
 apply plugin: 'com.google.gms.google-services'

 dependencies {
 // other dependencies
 compile 'com.google.android.gms:play-services-analytics:8.1.0'
 }

 Now that you have the build configured, you need to make some changes to your
 AndroidManifest.xml file. Because Google Analytics is an online service and you will be
sending data, you need to add the INTERNET and ACCESS_NETWORK_STATE permissions to your
 AndroidManifest.xml file. The following shows a snippet of the required entries:

 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.analytics">

 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

 <application android:name="AnalyticsApplication">

 <!-- The rest of your application manifest -->

 </application>
 </manifest>
 With the configuration in place, Google recommends that you subclass Application to
set up your tracking information. The following code snippet shows the code that
Google recommends implementing:/*
* Copyright Google Inc. All Rights Reserved.
*
 * Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

http://www.apache.org/licenses/LICENSE-2.0

ptg16707593

231Adding Google Analytics

 package com.google.samples.quickstart.analytics;

 import android.app.Application;

 import com.google.android.gms.analytics.GoogleAnalytics;
 import com.google.android.gms.analytics.Logger;
 import com.google.android.gms.analytics.Tracker;

 /**
* This is a subclass of {@link Application} used to provide shared objects for
* this app, such as the {@link Tracker}.
*/

 public class AnalyticsApplication extends Application {
 private Tracker mTracker;

 /**
* Gets the default {@link Tracker} for this {@link Application}.
* @return tracker
*/

synchronized public Tracker getDefaultTracker() {
 if (mTracker == null) {

GoogleAnalytics analytics = GoogleAnalytics.getInstance(this);
// To enable debug logging use: adb shell setprop log.tag.GAv4 DEBUG
mTracker = analytics.newTracker(R.xml.global_tracker);

 }
 return mTracker;
 }
 }

 You can now get an instance of the tracker and start tracking inside of an Activity by adding
the following code to the appropriate methods:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // set up the shared Tracker
 AnalyticsApplication application = (AnalyticsApplication) getApplication();
 mTracker = application.getDefaultTracker();
 }

 @Override
 public void onResume() {
 super.onResume(); // Always call the superclass method first

ptg16707593

232 Chapter 17 Google Analytics

 // add log to make sure that GA is being called...
 Log.i(TAG, "Setting screen name: " + name);
 mTracker.setScreenName("Image~" + name);
 // send the "hit" to GA
 mTracker.send(new HitBuilders.ScreenViewBuilder().build());
 }

 Note that instead of using the onResume() method, you could use another Activity or
 ViewPager . For any View, Fragment, or Activity for which you want tracking information, you
need to add the tracking code as well as send the Hit by using the HitBuilders class.

 You can find a demo application on GitHub that shows a slightly different configuration but is
a great starting point for your Android project for adding Google Analytics to your app. It can
be found at https://github.com/googleanalytics/hello-world-android-app .

 Google Analytics Basics

 Web developers have enjoyed the Google Analytics service for several years. It enables them to
set up marketing campaigns, test different versions of web pages, and, most importantly, find
where the gaps are in their online offerings.

 As an app developer, the prospect of being able to determine where users are struggling and
even see the amount of time they spend on a view inside of your application can help you to
create and fine-tune an application that will be used more and shared with others.

 By default, Google Analytics provides the following information when integrated into an app:

■ User and session count

■ Session duration

■ Operating system information

■ Device model

■ Geographic location

 In addition to the included statistics, you can use and create the following to enhance your
app analytics:

■ Events

■ Goals

■ Ecommerce

■ Custom timings

■ Custom dimensions

■ Custom metrics

https://github.com/googleanalytics/hello-world-android-app

ptg16707593

233Google Analytics Basics

 Each of these additional features gives you greater insight into your application and can work
together to help you get the most out of your app. Let’s take a closer look at what each of these
features is and how it would be used.

 Events

 An event is an action or objective that a user performs that can be quantified. For example, you
can create an event that will track how many times a user taps the Help button, or even how
many views the Support section of your app is getting.

 Events are made up from four components:

■ Category

■ Action

■ Label (optional)

■ Value (optional)

 The category is a custom name or organizational group you can add to your actions. Because
you may want to track more than one action, you may find that grouping actions together
will help you process the return data. It is important that you plan for how you will be report-
ing data before you decide on a concrete category name. If you were to use a generic category,
such as Visits or Views, you may end up with a lot of information that really isn’t quantifiable
for a particular page. Instead, “Visit – Help” and “View – High Score” would be better category
names if you are wanting to capture those specific events. If your app happens to be a game,
you could consider using the level the player is on as the category name.

 The action is separate from the category, but is still part of the event. You can name an action
based on what a user is doing, or what task they have initiated or completed. For example,
you could name an action “abandonment,” “paused,” or “saving.” Note that because actions
are separate from categories, you can use the same named action inside of two different event
calls with different categories. This flexibility allows you to have an action that happens in two
different categories and also gives you the ability to have unique actions that only happen in
one category.

 A label is an optional component that is used for additional information you want tracked with
the category and action. This label could be used to pass system information, download infor-
mation, or even create a note on why the event was triggered.

 Value is also an optional component, and unlike the other components it’s a positive integer
value. This value can be tied to just about any integer value you want. For example, you could
use it as a counter value, a time-to-render value, or even a value to track how long a user has
been on a certain screen, view, or level.

ptg16707593

234 Chapter 17 Google Analytics

 The following code snippet demonstrates tracking an event in a game:

 // Event to track coin gathering
 mTracker.send(new HitBuilders.EventBuilder()
 .setCategory("Brackety Bricks")
 .setAction("Collect")
 .setLabel("coin")
 .setValue(1)
 .build());

 Goals

 Goals determine if objectives are being met in your app. The objectives are defined by you and
may consist of page visits, purchases, or even collecting user information. Goals are closely tied
to conversion, which is the term for a completion of a goal or objective.

 Goals can fall into one of the following types:

■ Destination : A user has loaded or visited a specific location.

■ Duration : A user has spent a minimum amount of time in a session.

■ Pages/Screens per session : A user has visited or viewed a specific number of pages
or screens.

■ Event : A specific event was triggered.

 Goals also work with funnels for tracking how users reach goals. Funnels show you the shape
of user traffic and flow through a site or app. At the beginning, all users start at the top of the
funnel and then they filter out as they fail to achieve a particular goal or objective. This leaves
you with a smaller sample and gives not only a “funnel” shape to your report, but also shows
how the traffic is funneled, through conversion to goal completion.

 For more information on how to work with custom funnels in Google Analytics, visit
https://support.google.com/analytics/answer/6180923?hl=en .

 When you are working with an ecommerce or monetary goal, you can assign a dollar amount.
This can be helpful when making forecasts or when working on a commerce plan. The gener-
ated reports take the amount you assign per goal and give you an estimate on whether you are
on track to meet your financial goals or if you need to adjust your app or objectives.

 Think carefully about how to want to create goals, because you are only allotted 20 goals in
total. You can create goal sets of five goals each if the goals you have created are related to each
other. Once you create a goal, you cannot delete it. You can, however, repurpose it. Keep in
mind that because you are modifying an existing goal, it may make the reports you run confus-
ing because it will appear that the “new” goal existed in the past and with numbers that may
not make sense in the “new” context.

https://support.google.com/analytics/answer/6180923?hl=en

ptg16707593

235Google Analytics Basics

 Ecommerce

 Enhanced ecommerce allows you to track impressions, promotions, checkout process, refunds,
transactions, and other purchase-related activities. Ecommerce works closely with goals and
events, because to report ecommerce data you must send it with an existing hit.

 To track a product purchase made in your application, you must first create a product and
assign a name and price to it. You can then set up a ProductAction and assign a transaction
ID. Following that, you build the tracking event and send it to Google Analytics. The following
code snippet demonstrates this:

 // create the Product
 Product product = new Product()
 .setName("Rocket Fuel")
 .setPrice(10.00);

 // set the ProductAction
 ProductAction productAction = new ProductAction(ProductAction.ACTION_PURCHASE)
 .setTransactionId("T01701");

 // add the transaction to an Event
 HitBuilders.EventBuilder builder = new HitBuilders.EventBuilder()
 .setCategory("In-Game Store")
 .setAction("Purchase")
 .addProduct(product)
 .setProductAction(productAction);

 // send the transaction data with the event
 mTracker.send(builder.build());

 Custom Timings

 A custom timing is used when you want to measure the length of time it takes to complete a
particular task in your app. Custom timings are similar to events in that they are created in
almost the same manner; however, custom timings are different in that they are time based.

 The following snippet shows an example of how to create a custom timing for how long it
takes a user to complete a task in a game:

 // build and send a custom timing
 mTracker.send(new HitBuilders.TimingBuilder()
 .setCategory("Brackety Bricks")
 .setValue(42000) // 42 seconds
 .setVariable("First Stage")
 .setLabel("Race")
 .build());

ptg16707593

236 Chapter 17 Google Analytics

 Similar to setting up an event, you use a category, value, and label. The difference is that
instead of an action, a variable is used instead. The integer value component is used to send
timing information.

 Custom Dimensions

 Custom dimensions allow you to create reports that track users with a particular trait, attribute,
or matching metadata set. This can be useful for determining a player’s skill level, the difficulty
level the majority of players select, or even the type of device most players are using to play
your game.

 Setting up a custom dimension requires some setup inside of the Google Analytics web inter-
face. Note that similar to working with goals, you only have 20 available slots for setting up
custom dimensions.

 The following is a snippet used to add data that shows the currently selected skill level for the
level Brackety Bricks:

 // set a custom dimension to track level and difficulty
 mTracker.setScreen("BracketyBricks");
 mTracker.send(new HitBuilders.ScreenViewBuilder()
 .setCustomDimension(3, "Brackety Bricks")
 .build()
);

 Custom Metrics

 Custom metrics are similar to custom dimensions, in that they are allowed to use different
scopes. A custom metric is best used when you need to create a report that covers data that
may be difficult to track elsewhere without creating excess and erroneous data.

 Creating a custom metric is done inside of the Admin settings, under the Property section and
as an option listed in Custom Definitions of the Google Analytics web interface. A custom
metric requires the following:

■ A name

■ A scope set to either Hit or Product

■ A formatting type of Integer, Currency, or Time

 Optionally, you can opt to set up a minimum value as well as a maximum value for your
custom metric.

ptg16707593

237Summary

 The following snippet shows reporting a view to a hint screen during a level of Brackety Bricks
as a custom metric:

 mTracker.setScreen("BracketyBricks");
 mTracker.send(new HitBuilders.ScreenViewBuilder()
 .setCustomMetric(1, "Hint Page")
 .build()
);

 Summary

 In this chapter, you learned how to add Google Analytics to your Android project. You learned
about the features of Google Analytics that you can use to gain a greater understanding of your
application and how users are using your app.

 You learned about tracking user interaction through events. You were shown how to create
events to track specific tasks or objectives in your app.

 You also learned about goals and how they work with events and ecommerce tracking to create
funnel reports. You learned that the funnel is important because it allows you to fine-tune your
app to meet the needs of your users and increase your revenue stream. You also learned that
you are limited to having 20 goals that can be reused but not deleted.

 You learned about ecommerce tracking and how data is sent with other events. You learned
that ecommerce is used with creating products and tracking the transaction and sale of
products.

 You also learned about using custom timings with Google Analytics. Custom timings are
similar to events; however, the value passed is used to track how long a user takes to complete
an objective rather than be used as a counter or other numeric value.

 You then learned about custom dimensions. Custom dimensions require extra setup, but allow
you to track custom values such as the skill or difficulty setting selected for a particular level.
Similarly to goals, you are limited to having 20 custom dimensions in total, but they can be
reused when needed.

 Finally, you learned about custom metrics, which are similar to custom dimensions in reporting
useful data back to you. You learned the requirements for using a custom metric as well as how
to implement the code for reporting the metric back to Google Analytics.

ptg16707593

This page intentionally left blank

ptg16707593

 18
 Optimization

 Creating a well-balanced app goes beyond creating network connections, adding data storage,
and using eye-popping visuals. A well-crafted app takes into consideration the limitations of
the device and uses various techniques to maximize the experience for the end user. In this
chapter, you learn about extending the Application class, setting up custom logging for
your app, changing the configuration based on the version of your app, and managing device
memory.

 Application Optimization

 When you’re creating your app, the odds are high that you have spent a considerable amount
of time going over the critical onCreate() method, adding a proper amount of unit testing,
and using the Log class to fine-tune the expected objects and values being used in your appli-
cation. These are all excellent steps in creating a solid high-performance app. However, each
of these steps can be modified to give you even finer control over your application and to
enhance the experience you are offering to your users.

 When it comes to an overall schematic of your application, every optimization counts and
every bit of performance you can squeeze out of the app will make a difference. The following
recommendations and tips will help you create an app that runs leaner and longer.

 Application First

 When looking back on the Activity lifecycle of Android, the first thing you learn is that code in
the onCreate() method will always be executed first. This is true when speaking directly of the
lifecycle of your app; however, any ContentProviders will execute their onCreate() method
and any code inside of it will initialize and run before the onCreate() in your Activity.

ptg16707593

240 Chapter 18 Optimization

 There is a step you can add between the ContentProvider.onCreate() and the onCreate()
of your app. This is done by extending the Application object. The following demonstrates
this in action:

 package mypackage;
 public class MyApplication extends Application {
 // custom subclass

 public void onCreate() {
 // this onCreate() will run before any others
 }
 }

 In order to use this subclass, you need to add it to your application manifest. This is done by
setting the android:name property in the <application> element. You can also list your
Activity, the services needed, and any receivers your app needs. The following code demon-
strates how to do this in your application manifest XML:

 <?xml version="1.0" encoding="utf-8"?>
 <manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="mypackage.MyApplication">
 <application
 android:name="mypackage.MyApplication"
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme">

 <activity android:name="MyActivity"> <intent-filter>

<action android:name="android.intent.action.MAIN" /> </intent-filter>

 </activity>

 <!-- the rest of your services, receivers, etc -->

 </application>
 </manifest>

 Given a cursory glance, using this application setup might not seem to be that great of an
enhancement; however, by using this in your app, you can now perform the following tasks:

■ Initialize the SDKs and libraries your app needs.

■ Register any dynamic broadcast receivers your app uses.

ptg16707593

241Application Optimization

■ Create and manage any services your app needs.

■ Manage the actual starting point of your app by having it be the absolute entry point
because it is called first.

 Most of these benefits may be done in a regular Activity; however, a standard app may be
called in a variety of ways. This could be through a service, an explicit or implicit Intent, or
other broadcast receivers. The ability to control the actual flow so that you can manage state is
a boon for making sure your app is able to respond appropriately at any stage of being invoked.

 Note

 Running various library initializations and doing some setup work will help your application get
up to speed and working quickly; however, you should never do any blocking work (such as cre-
ating network connection) inside of Application.onCreate() . Adding anything that will block
will cause your app to create an ANR or crash immediately on launch, thus rendering your app
useless.

 Application Logging

 While you are working on extending the application, you may want to implement a different
form of logging. The Log class gives you the ability to throw specific log messages and types in
your application. One of the biggest problems with logging inside of an app is unit testing. The
 Log class tends to throw a RuntimeException when used in local unit tests. Another problem
is that if you are creating libraries that will be used in other Android projects, you must make
sure to remove your log messages or else others will run into the same errors and exceptions
when running their own unit tests.

 To get around this potential problem, you can create a class that extends Handler that routes
your custom messages to LogCat and registers it to run at app launch. You can then create a
method that gets the handler, sets a logging level, and displays the message to LogCat. The
following shows a sample method that could be called from the onCreate() method of your
main Activity:

 private void initLogging() {
 // set package name
 final String pkg = getClass().getPackage().getName();
 // set handler for the package
 final AndroidLogHandler alh = new AndroidLogHandler(pkg);
 // create the logger
 Logger logger = Logger.getLogger(pkg);
 logger.addHandler(alh);
 logger.setUseParentHandlers(false);
 // set default log level here
 logger.setLevel(Level.FINEST);
 logger.info("Logging initialized with default level " + logger.getLevel());
 }

ptg16707593

242 Chapter 18 Optimization

 Another benefit of this type of logging is that you can create logic checks to determine if
logging should be sent. You can check the currently logging level, and if it’s not at the level
you want, nothing will be logged. The following shows an example of this in action:

 private void nameCheck(String name) {
 if (LOGGER.isLoggable(Level.WARNING)) {
 LOGGER.warning("checking name: " + name);
 }
 }

 For a full example of both extending Application and implementing this logging example, a
sample app that can be imported into Android Studio has been created by Doug Stevenson, one
of the Android team members. This sample application can be found at https://github.com/
AnDevDoug/devtricks .

 Application Configuration

 One of the best features that the Gradle build system brings to Android is the ability to create
custom configurations for your Android Studio project. You should consider versioning your
configuration for a variety of reasons, including the following:

■ To change credentials for API and database authentication

■ To change ports or endpoints for various services

■ To toggle testing and debugging output

■ To use modified constants, variables, and resources

■ To create a white label app

 The values or constants you want to use as defaults should be stored inside of an XML file in
your res/values directory. The files you wish to alternate between can then be versioned into
a new folder; to keep things easy, you could create a new directory in the res directory, leaving
you with a folder path of res/values-1 .

 This should leave you with the following structure in your project:

 res/values/config.xml // original config file path
 res/values-1/config.xml // dev config file path

 This particular method of storing information does not leverage the power of the Gradle build
system, but does allow you load the constants you need and keep them in properly versioned
files. In order to leverage the power of the Gradle system, you can inject values that are
contained inside of the ProductFlavors section of the gradle.build file in your app module.

 The values placed are stored in a resValue entry that then lists the type , key , and value . The
following shows a sample entry from the app module’s gradle.build file that sets up a config-
uration based on the same version of the app, but in different folders:

https://github.com/AnDevDoug/devtricks
https://github.com/AnDevDoug/devtricks

ptg16707593

243Memory Management

 apply plugin: 'com.android.application'

 android {
 // set compile options and other resources

 defaultConfig {
 // you can inject resources here in addition to others you may have set
 }

 buildTypes {
 // you can inject resources here in addition to others you may have set
 }

 productFlavors {
 // set up production resource injection
 prod {

versionName '1.0'
resValue 'string', 'my_api_key', 'HARKNESS'

 }

 // set up development resource injection
 dev {

versionName '1.0-dev'
resValue 'string', 'my_api_key', 'BADWOLF'

 }
 }
 }

 dependencies {
 // add your dependencies
 }

 When the app is built, you can then gain access to the values by either calling them in the
 onCreate() method of your application or by loading them into the object model. Depending
on the route you take, you can access the values via the getResources() method. To load the
values from the preceding sample snippet, you would use the following:

 getResources().getString(R.string.my_api_key)

 Memory Management

 Changing the way you load configuration files and how your app is initialized is great for
making sure your app gets off on the right foot; however, none of that will matter if your app
is constantly running out of memory and throwing an OutOfMemoryError that confuses users
and leaves them uninstalling your app and using a different one.

ptg16707593

244 Chapter 18 Optimization

 When developing your application, it is important that you are doing what you can to maxi-
mize the efficiency of your code base. This means that you should take great care in how
objects are created, what types you are using, and that you are not blocking the natural garbage
collection process.

 You can minimize how often garbage collection runs by minimizing the amount of objects you
create. This even applies to temporary objects. If you can create a single object and repurpose
the value of it, you will better off than creating new objects. Garbage collection is a wonderful
thing, but it is still a drain on system resources.

 Take advantage of the getMemoryClass() function. This function checks the size of the
memory heap (in MB) that is available for your app. If you attempt to go beyond this limit,
your app will throw an OutOfMemoryError exception. Note that getMemoryClass() is a
method on ActivityManager . This can be used as follows:

 int memoryClass = activityManager.getMemoryClass();

 When creating threads for your app, you should be aware that each thread is a garbage collec-
tion root. Devices in the market before Android Lollipop was released use the Dalvik Virtual
Machine and will keep references to these threads open so that garbage collection does not
occur automatically on them. This makes it an absolute necessity for you to close threads when
you are finished with them. Failure to do so will lock the memory allocated to them, which will
not be released until the process (your app) is terminated by the system. You can avoid spin-
ning up new threads by using a Loader for a short asynchronous operation within an Activity
lifecycle; a Service should be used when you need to report back to an Activity by means of a
 BroadcastReceiver , or you could use an AsyncTask for other short-term operations.

 When using a Service, make sure it only runs for the amount of time you need it. Creating an
 IntentService allows you to create a Service that will finish when it is finished handling an
Intent. Services may be necessary for your app to work correctly; however, they expose your
app as a potential bottleneck for memory and battery problems for users. A user who believes
your app is a problem will not hesitate to remove it from their device. If you need to have
a long-running Service, you should consider setting the android:process property in your
Service in the AndroidManifest.xml file. Make sure that when you do this you avoid allow-
ing the Service to make changes or influence the UI in any way. If it does, you may more than
double the amount of memory your Service uses.

 Using Proguard is not just a recommended step for code obfuscation: It also optimizes your
code by finding unused code and removing it. The returned code is compacted and should
reduce the amount of RAM required to run the code. You can combine using Proguard with
 zipalign to make sure that the uncompressible resources in your apk file are aligned correctly
within the archive. This in turn saves on the amount of RAM needed to run your app. The
 zipalign tool can be run by using the following code in your terminal (provided that the
Android SDK is in your system path):

 zipalign 4 infile.apk outfile.apk

ptg16707593

245Memory Management

 Note that you can pass an argument of -f to force overwriting the outfile.apk file should
it already exist. Using an argument of -v will show the verbose output of the utility. If you
believe that your apk file is already aligned but would like to verify it, you can run the
following:

 zipalign -c -v 4 outfile.apk

 The argument of -c will “confirm” the alignment of the file. The -v argument is still used as a
verbose output of the utility running.

 Garbage Collection Monitoring

 When viewing the log from LogCat or from DDMS, you’ll see several messages related directly
to garbage collection. The following list explains the messages that you will find and what
they mean:

■ GC [reason] : The reason that garbage collection was run. Here are some possible
reasons:

■ GC_CONCURRENT : Garbage collection that frees up memory as the memory heap
fills up.

■ GC_FOR_ALLOC : Garbage collection that occurs because the app has attempted to
allocate memory when the memory heap was already full, causing the system to
stop the app and reclaim memory.

■ GC_HPROF_DUMP_HEAP : Garbage collection that occurs due to the creation of an
HPROF file for further analysis of the memory heap.

■ GC_EXPLICIT : An explicitly called garbage collection. If you are seeing this, you or
one of your included libraries may have a problem as garbage collection is being
forced to run manually.

■ Amount freed : The amount of memory freed or reclaimed from garbage collection.

■ Heap stats : The percentage free and the (number of live objects) / (total heap size).

■ External memory stats : The external allocated memory on API level 10 and lower,
shown as (amount of allocated memory) / (limit at which collection will occur).

■ Pause time : The larger the heap, the longer the pause time. Concurrent pause times will
show two pauses: One at the beginning of the collection and another near the end.

 Checking Memory Usage

 Besides using the DDMS or LogCat tool to view memory usage in Android Studio, you may
want to use an adb command-line tool to view the status of memory management. Remember
that when using adb you need to have your device in debugging mode and connected to your

ptg16707593

246 Chapter 18 Optimization

computer. To make sure your device is connected and that your computer can see your device,
you can run the following command:

 adb devices

 Note that Linux and OS X terminal windows may need to use ./adb to execute the command.
You may also see the following message:

*daemon not running. starting it now on port 5037 *

 If the next line tells you that the daemon was started successfully, you should check your
device to see if it has connected or is ready to exchange SSH keys with the computer. Once
you have verified that your phone is set up correctly, you can run the adb devices command
again to see the devices that are connected to your computer.

 If you are not using a physical device, you can start an Android emulator and run the
command to make sure the emulator is connected properly to your system. If it is properly
attached, you should see it listed similar to the following:

 List of devices attached
 emulator-5554 device

 With a device listed, you can now use adb to collect the memory information for a specific
package. The following command displays the results from the com.android.phone package:

 adb shell dumpsys meminfo com.android.phone

 Figure 18.1 shows the command being run and the output that is returned in a terminal
window.

 The returned values are a snapshot of how the com.android.phone package is behaving on the
device. You can see if the package has increased in memory size since launch, the size of the
memory heap as well as space available for it, the number of objects that have been created,
and database information.

 Note that the package com.android.phone is just an example. When testing your app, make
sure to be testing package(s) you use to get results that are relative to your app.

 Although all the information presented is important, pay particularly close attention to the Pss
Total and the Private Dirty columns. The Pss Total column represents all connections to
the main device memory thread, whereas the Private Dirty column keeps track of the actual
amount of RAM your application is using on the heap since the app was started.

ptg16707593

247Performance

 Performance

 You can do a few things inside your code that can help optimize not only the memory in use,
but also the speed at which the system will run your code on a device. Many optimizations
may be overlooked due to timelines, or even just because the code you use is the way you are
familiar with coding and is something you have always done. That doesn’t mean that your app
will not work; however, it does mean that some devices may not be able to run your app at the
speed you expect, making some users frustrated with the bad performance they perceive.

 Working with Objects

 It was previously mentioned that garbage collection for your application will run based on the
number of objects you create. You can minimize object creation by not using temporary objects
and working directly on an existing object.

 When you use a method that returns a String that will be appended to a StringBuffer
object, there is no need to create a new object to contain the return String and then add the
temp object to the StringBuffer object. Instead, you should try to work directly with the
 StringBuffer object, skipping the temporary object all together.

 Figure 18.1 You can discover a considerable amount of memory information about the
packages on your device.

ptg16707593

248 Chapter 18 Optimization

 You should also consider using StringBuilder when you do not have multiple threads access-
ing it at the same time. StringBuilder does not have every method marked for synchroniza-
tion like StringBuffer does and will give a considerable performance boost when working
with String s.

 If you do not need to modify the state of an object, you should make your methods static .
This increases the initial time needed for your method, and grants the additional bonus of you
knowing that your method will not be changing the state of the object.

 Static Methods and Variables

 In addition to making your methods static , you should also make any constants static
final . Adding this to a variable you will be using as constant, the system knows that it will
not need to store your object into a field that will need to be referenced every time you want to
use the variable.

 You should also avoid the use of enum . In standard Java, an enum provides an incredibly useful
way of handling constants; however, when using one, you double the amount of memory allo-
cated for it. If you can get by without using an enum , you should do it.

 When getting values for your variables, you should avoid using getters. Android is faster when
working directly with an object instead through a method call. This is due to the virtual
method call being much more processor and memory intensive than using a direct field
lookup. The exception to this rule is when you are working with interfaces where using getters
is an acceptable practice because the field cannot be directly accessed.

 Enhanced for Loops

 When you find yourself needing to iterate over a value, how you choose to build your for loop
matters. You should be acquainted with for loops, so the following code should be familiar:

 int total = 0;
 for (int i = 0; i < myArray.length; ++i) {
 total += myArray[i].myItem;
 }

 In this example, an int is set up to contain a total count and then the for loop is executed
to get the number of myItem s that are stored in the myArray to be stored in the total vari-
able. This loop is functional, but it is not optimized. Even though the variable i is defined, the
length of myArray must be looked up on every single iteration. To speed this up, you can use
the enhanced for loop syntax that was introduced in Java 1.5:

 int total = 0;
 for (<type> a : myArray) {
 total += a.myItem;
 }

ptg16707593

249Summary

 By using this syntax, the compiler is already aware of the length of the myArray object and
avoids having to perform a lookup every time the loop runs. Note that <type> should be
changed to the type (int , String , etc) that you are expecting to work with.

 float , double , and int

 Even though a double will take up two times the space in memory that a float will take, try
to use a double if possible.

 An interesting performance note is that a float will be two times slower than an int to
process. If you do not need the extra precision of a float or double , you should opt for an
 int or an Integer if you need to handle potential null values or need a wrapper.

 Optimized Data Containers

 Android has included several data containers you can leverage that yield a more memory-
performant app. Instead of using a HashMap , consider using one of the following, depending
on the data your HashMap would store:

■ SparseArray instead of HashMap <Integer, Object>

■ SparseBooleanArray instead of HashMap <Integer, Boolean>

■ SparseIntArray instead of HashMap <Integer, Integer>

■ SparseLongArray instead of HashMap <Integer, Long>

■ LongSparseArray instead of HashMap <Long, Object>

 Using these built-in types is faster and they are optimized for Android to work with. They
are allocation-free and do not auto-box keys. SparseArray s are also more memory efficient
because they do not require as much overhead as a HashMap .

 You should use a plain or raw array (int[]) instead of a HashMap when you can. This helps
with performance because a wrapper is not needed to perform field lookups.

 Summary

 In this chapter, you learned some new methods for enhancing the performance as well as the
organization of your app. You learned that you can control the entry point of your app and
optimize the resources it will need to use by extending the Application class.

 You also learned that by creating your own logging implementation in conjunction with
extending the Application class, you can create a log that works with unit testing instead of
throwing errors.

ptg16707593

250 Chapter 18 Optimization

 You learned that you can also create different configurations that you can use based on the
version of your app. This is incredibly useful when working with different credentials for
services, APIs, and database access across different environments.

 You learned about streamlining your app for maximum memory usage by incorporating various
tactics, such as minimizing object creation, being aware of how much memory is available
for your app, and using command-line tools in conjunction with the adb command to view
memory usage.

 Finally, you learned about increasing performance by writing code that is optimized for
Android. This includes using static final variables, being careful with primitive types, and
not using a HashMap , because many other data containers are available that will yield similar
results with better performance.

ptg16707593

 19
 Android TV

 There have been many attempts to create an experience that a group of people can take part in
and share while staying in the comfort of their own home. Many homes have at least one TV,
and it is generally located in an area with lots of space where can be viewed by many people.
Android TV takes advantage of this space by allowing you to create applications that can be
used and enjoyed in this environment. In this chapter, you learn the basics of creating an
Android TV application and some of what the Android TV SDK offers to help you get your
app to the big screen.

 The Big Picture

 Phones, tablets, and other Android devices are wonderful for taking your life with you, but
when it comes to enjoying content with friends, family, and others, it can get a little crowded
around a small screen.

 Some content doesn’t do as well in the small screen space and needs more space in order to be
fully enjoyed. Apps that stream video and music or even deliver a multiplayer experience can
be used and enjoyed easier on a TV.

 Google has stepped into the TV domain before and had many early successes with partners
using the Google TV platform. This platform was an early attempt to provide many of Google’s
services to the masses using the biggest screen in the house. In June 2014, it was announced at
Google I/O that Android TV would be the successor to Google TV.

 Android TV focuses on providing the following services:

■ Cinematic access to your personalized Google goods

■ Voice search

■ App and content recommendations based on content consumption

■ Games and apps

ptg16707593

252 Chapter 19 Android TV

 Android TV may not appear to be too different from a standard Android device in basic capabil-
ity; in this respect, almost any app can be ported to Android TV for users to start enjoying. This
comes with a few caveats, however: Because of the form-factor of the TV, some considerations
need to be made to make the app work correctly and be useable on an Android TV–capable
device.

 Ten-Foot View

 When working with Android TV, you will often hear about the “ten-foot view,” which is the
typical viewing distance from user to screen. This means that the amount of detail that goes
into an app changes. Whereas precision and detail are massive factors to consider on a small-
screen device, many of those details can now become lost or difficult to pick out when viewed
from a distance.

 When designing a user interface, you should use a grid or similar system so that items are
large, easy to read, and easy to navigate with a remote. You should also build your app to be
presented in landscape rather than portrait orientation.

 Apps built for Android TV should use Fragments to help you manage sections of the screen
rather than a single View that is stretched or scaled to fit. Because of the landscape orientation
of TVs, you should also implement GridView s rather than ListView s, because a GridView will
take advantage of the available horizontal screen space.

 To help you with your visual layout, consider using the Leanback support library. Leanback
is required by Android TV; however, this support library includes a theme that will give you
many of the recommended styles your app should be using as well as a head start on getting
your app visually ready. The following shows how this theme can be applied by adding it to
the <activity> element of your application manifest XML:

 <activity
 android:name="com.example.android.TvActivity"
 android:label="@string/app_name"
 android:theme="@style/Theme.Leanback">

 If you do not want to use this particular theme, at least implement the following, because
Android TV apps should not show a title bar:

 <activity
 android:name="com.example.android.TvActivity"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.NoTitleBar">

 Many resources are sharable between a standard Android app and an Android TV app; however,
you should never share layout resources. Always make sure to create separate ones. You should
not be using an ActionBar in the Android TV because it is difficult for a user to navigate with
using a remote.

ptg16707593

253The Big Picture

 If your app integrates with advertisement services, note the following:

■ The user should be able to dismiss full-screen non-video ads immediately using the
remote control.

■ It is recommended that you use video ads that can be dismissed within 30 seconds.

■ If an ad is not full screen, the user should be able to interact and click it using a remote.

■ Ads should not attempt to open a web browser or link to a web URL.

■ Ads should not be able to link to other apps that are not available for TV devices.

 If, for any reason, you require loading or using web resources, you must use a WebView , not a
browser. A full browser implementation is not currently supported on Android TV. This is espe-
cially important when you are creating multiplatform (Android and Android TV) apps.

 Controls are also different on a TV. Because users are away from the screen, you need to think
about how navigation should work with a remote. Remotes should have a two-axis directional
pad. This provides movement along the X and Y planes and, depending on your app, you
should add a visual clue to where the cursor is so that the user can quickly make directional
changes. You should also take care to ensure that every element in your app is accessible via
a controller.

 Your app should be built without any reliance on the user having to press the Menu key on a
remote. This doesn’t mean you can’t wire the key in, but it does mean that you should have a
Settings or Options area with all of the menu items available.

 To help a user visually understand the interface, there are four states an item such as a button
can be in to show visual styles:

■ Focused : android:state_focused="true"

■ Hovered : android:state_hovered="true"

■ Pressed : android:state_pressed="true"

■ Default : No property required for the default state

 The following code snippet will alter the assigned drawable resource based on these states:

 <?xml version="1.0" encoding="utf-8"?>
 <selector xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- focused -->
 <item android:state_focused="true"

android:drawable="@drawable/button_focused" />
 <!-- hovered -->
 <item android:state_hovered="true"

android:drawable="@drawable/button_focused" />
 <!-- pressed -->
 <item android:state_pressed="true"

android:drawable="@drawable/button_pressed" />

ptg16707593

254 Chapter 19 Android TV

 <!-- default -->
 <item android:drawable="@drawable/button_normal" />
 </selector>

 Along with visual indicators, you should also add audio cues. These cues can help a user deter-
mine that input was received, and they are of particular help when reaching the end of a
scrollable list.

 TV Capabilities

 TVs come in different sizes and shapes, and not all TVs even contain the same aspect ratio.
Many TVs may contain an aspect ratio of 16:9, whereas others may have a 4:3 or even a 21:9
aspect ratio. Despite these current differences in aspect ratio, Google recommends that you
build your visual assets for a 1920×1080 screen (HD). In addition to this size, you should add
5% to the size to account for motion as part of the interface. This gives you a working space
of 2016×1134px.

 Another issue that some TV screens present is “overscan,” which used to refer to the margin of
space that falls outside the bezel or display range when the image is projected on the TV screen.
Today, this applies to the zoom level a TV may have enabled. You can get around this issue by
making sure that your critical content has at least 48px of space from the left and right sides of
the screen as well 27px of space between the top and bottom. If you are working at a different
size, you should be safe by using a margin of 10% for the width and height of the screen. This
area is known as the “action-safe area.”

 The following shows a LinearLayout that takes into consideration the margin values to make
sure the content shown will be inside of the action-safe area:

 <?xml version="1.0" encoding="utf-8"?>
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/base_layout"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:layout_marginTop="27dp"
 android:layout_marginLeft="48dp"
 android:layout_marginRight="48dp"
 android:layout_marginBottom="27dp" >
 </LinearLayout>

 Tip

 As a reminder to those new to using the android:orientation property, it contains a value
of vertical , which does not mean that the layout will be in portrait. Instead, views will be
stacked rather than placed side-by-side.

ptg16707593

255The Big Picture

 To recap, when working with a screen, you should plan on the following:

■ Background assets should be 2016×1134px.

■ Designs should fit within 1920×1080px.

■ The action-safe area is inside of 1728×972px.

 Many TVs also differ in included functionality. To address these issues, the following feature
descriptors are unavailable to Android TV:

■ android.hardware.touchscreen

■ android.hardware.faketouch

■ android.hardware.telephony

■ android.hardware.camera

■ android.hardware.bluetooth

■ android.hardware.nfc

■ android.hardware.location.gps

■ android.hardware.microphone

■ android.hardware.sensor

 Note that even though android.hardware.microphone is listed here, this does not apply to
the microphone input of a remote or controller.

 If you have created a cross-platform application that does use one or more of these
features on other devices but will continue to function without them, you can add
 android:required="false" to any element. This way, users can enjoy all of the features or
enhancements of your app on their phone or tablet, and still have some functionality on their
Android TV.

 Text, Color, and Bitmaps

 Text sizes, colors, and bitmaps all important when you are working with Android TV. The
variety in the technology, size, and shape of a TV adds a new layer of complexity and fragmen-
tation to deal with. To provide the best experience, make sure you implement the following
guidelines:

■ Text should have a minimum size of 12sp (scale-independent).

■ Text by default should have a size of 18sp.

■ Card titles should be sized at 16sp in Roboto Condensed.

■ Card subtext should be sized at 12sp in Roboto Condensed.

■ Browse screen titles should be 44sp in Roboto Regular.

ptg16707593

256 Chapter 19 Android TV

■ Browse category titles should be 20sp in Roboto Condensed.

■ Details content titles should be 34sp in Roboto Regular.

■ Details subtext should be 14sp in Roboto Regular.

■ Make your text concise and easy to read in chunks rather than in long paragraphs and
sentences.

■ Use light-colored text on dark-colored backgrounds.

■ Sans-serif and anti-aliased fonts are the easiest to read on TV screens.

■ Use dp and sp units rather than absolute pixels.

 Using sp units over dp (density-independent) units is suggested with Android TV, as it will scale
based on user font-size preferences. A dp value may or may not be accurate based on the device
and TV in use.

 It is important to follow these guidelines so that when users are using their Android TV your
app looks same on the Browse screen and when viewing the Details sceen and the Cards of
recently used or viewed items, thus giving the user a consistent and enjoyable experience.

 You should always avoid using “light” or “thin” fonts and styles because this may give your
fonts an aliased or jagged appearance on some TV screens.

 When working with color, keep the following guidelines in mind:

■ Colors will not render the same on TV screens as they do on monitors, phones, and
tablets.

■ Some TVs apply smoothing, sharpening, saturation, and other filters that may distort or
change color.

■ Environmental differences may change color hue, brightness, and saturation.

■ Some TV are unable to show perfect gradients and will instead provide color bands.

■ Be careful when using pure or highly saturated colors for large areas of the screen; these
may be displayed at an overly intense level compared to the rest of your colors.

■ Avoid filling the screen with pure white.

■ Add high contrast to elements that are different from each other so that the images and
sections do not appear muddy and are easy to visually recognize as different areas.

■ Always make sure that text and backgrounds have a high level of contrast; otherwise, text
may become impossible to read.

 Your app should have an app banner that can be displayed on the home screen of the Android
TV device. This banner should be 320×180px (xhdpi resource). There should be legible text in
the image rather than just a picture. Note that if you offer a multilingual app, you must include
an app banner for every language you support. This app banner is configured by adding the
following property to your application manifest XML:

ptg16707593

257The Big Picture

 <application
 ...
 android:banner="@drawable/banner">
 <!-- other manifest elements go here -->
 </application>

 The home screen of Android TV displays recommendations based on user activity. These
recommendations consist of a few components:

■ Large icon

■ Small icon

■ Content title

■ Content text

■ Background (optional)

 Figure 19.1 shows a wireframe of the card that displays these components for apps.

5
3
4

2

1

 Figure 19.1 (1) Background image, (2) large icon, (3) content title, (4) content text,
(5) small icon

 Follow these guidelines for the large icon:

■ Cannot be a transparent image.

■ Minimum height of 176dp.

■ Minimum width of 2/3 the height (if 176dp tall, the minimum width should be 117dp).

■ Maximum width of 4/3 the height (if 176dp tall, the maximum width should be 234dp).

 The small icon should follow these guidelines:

■ Flat image.

■ Will be displayed at 100% opacity when the card is selected and at 50% when the card is
not selected.

ptg16707593

258 Chapter 19 Android TV

■ Icon should be imposed over the colored background for the title and content section.

■ The icon should have a size of 16×16dp with a white icon on a transparent background
saved in a monocolor PNG format.

 As a reminder, the text on these cards should follow these guidelines:

■ Card titles should be sized at 16sp in Roboto Condensed.

■ Card subtext should be sized at 12sp in Roboto Condensed.

 The background image will be shown as a full-screen background when your card is selected. It
should not be just a larger or expanded image of the large icon, but should show another image
of your app or content that enhances the experience. It should follow these guidelines:

■ Must be 2016×1134 (otherwise, the system will scale).

■ Must not be transparent.

 Widgets are provided in the Leanback support library that add support for these background
images as well as update them as items gain and lose focus.

 When you’re working with bitmaps, the same performance enhancements apply that are
recommended with standard Android apps. The following list contains the recommendations
for working with large bitmaps in your Android TV app:

■ Use the recycle() method on any Bitmap objects when they are no longer needed.

■ Load images when they are needed rather than preloading them.

■ Use an AsyncTask or a similar background process to get images from the network.

■ Either work with appropriately sized images or resize the images when you download
them rather than trying to put too large of an image in place.

 Building an App

 The quickest way to get started building an Android TV app is to use Android Studio and
start a new project. When you are in the New Project Wizard, uncheck the Phone and Tablet
option and check the TV option. After you choose this option, you can set a target SDK level.
Similar to when you work with phone and tablet apps, choose a minimum level rather than a
maximum level. Note that Android TV requires a minimum level of Lollipop (API level 21).

 Note

 If you cannot choose the TV option because it is grayed out, launch the Android SDK Manager
and update your SDK packages.

ptg16707593

259Building an App

 After finishing the New Project Wizard, you will have a project with three layout files:

■ activity_details.xml

■ activity_main.xml

■ playback_controls.xml

 As mentioned earlier, it is good practice to create Android TV apps using Fragments. Each of
these files contains a Fragment that will handle a different portion of your app.

 Another file you should be aware of is res/values/themes.xml . This file is included automati-
cally when you create a new Android TV project and includes the theme for Leanback. It also
sets up the styles of several items. The following shows the file’s content:

 <resources>
 <style name="Theme.Example.Leanback" parent="Theme.Leanback">
 <item name="android:windowEnterTransition">@android:transition/fade</item>
 <item name="android:windowExitTransition">@android:transition/fade</item>
 <item name="android:windowSharedElementExitTransition">

@android:transition/move
 </item>
 <item name="android:windowSharedElementEnterTransition">

@android:transition/move
 </item>
 <item name="android:windowAllowReturnTransitionOverlap">true</item>
 <item name="android:windowAllowEnterTransitionOverlap">true</item>
 <item name="android:windowContentTransitions">true</item>
 <item name="android:colorPrimary">@color/search_opaque</item>

 </style>
 </resources>

 The next file you should examine is the application manifest XML. This file contains several
important elements, including Leanback declarations as well as setting up your project activi-
ties. The following shows the contents of the AndoridManifest.xml file:

 <?xml version="1.0" encoding="utf-8"?>
 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.dutsonpa.helloatv" >

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.RECORD_AUDIO" />

 <uses-feature
 android:name="android.hardware.touchscreen"
 android:required="false" />

ptg16707593

260 Chapter 19 Android TV

 <uses-feature
 android:name="android.software.leanback"
 android:required="true" />

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:supportsRtl="true"
 android:theme="@style/Theme.Leanback" >
 <activity

android:name=".MainActivity"
android:banner="@drawable/app_icon_your_company"
android:icon="@drawable/app_icon_your_company"
android:label="@string/app_name"
android:logo="@drawable/app_icon_your_company"
android:screenOrientation="landscape" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LEANBACK_LAUNCHER" />
</intent-filter>

 </activity>
 <activity android:name=".DetailsActivity" />
 <activity android:name=".PlaybackOverlayActivity" />
 <activity android:name=".BrowseErrorActivity" />
 </application>
 </manifest>

 It is worth taking particular notice of the element <category android:name="android.
intent.category.LEANBACK_LAUNCHER" /> . If you do not include this filter, your app will
not be visible to users running the Google Play Store on their Android TV device. Beyond that,
it will not even be visible when loading your app through developer tools. This filter should
always be in place when creating Android TV apps.

 As previously mentioned, not all hardware features of Android are supported on Android TV.
To make sure that app knows that a touchscreen is not required, it has been included along
with the property android:required="false" . This allows the system to function even
though a touchscreen is not detected, as well as to display your app in the Play Store on the
Android TV device.

 The last file you should check is the gradle.build file in the app module. This file contains
some support libraries that you will want to include to make your app function correctly. Note
the following dependencies that should be included:

 dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 compile 'com.android.support:recyclerview-v7:23.0.1'

ptg16707593

261Emulation and Testing

 compile 'com.android.support:leanback-v17:23.0.1'
 compile 'com.android.support:appcompat-v7:23.0.1'
 compile 'com.github.bumptech.glide:glide:3.4.+'
 }

 Each of these dependencies offers methods that your app will need. Here’s a list of them and
what they do:

■ recyclerview : This provides the needed classes for displaying long lists and is required
by the Leanback library.

■ leanback : This provides the widgets, themes, and media playback support essential for
proper Android TV app functionality.

■ appcompat : This provides compatible dialogs, activities, and other classes that allow your
app to work with different base versions of Android.

■ glide : This is not a required dependency; however, it provides a visual media service
that efficiently retrieves and processes visual media files. You can learn more about
 glide by visiting https://github.com/bumptech/glide .

■ cardview : This dependency is not included in the example; however, consider using it
for displaying media files as well as descriptions on cards.

 Now that you have a sample project ready to go, it is time to look at how you debug and
view it.

 Emulation and Testing

 If you own an Android TV device, you may be able to use it to debug over USB. The process to
enable Developer Mode is similar to a standard Android device. In short, you need to perform
the following steps:

1. Navigate to the system settings.

2. Find the Device row and select About .

3. Scroll down to Build and click or press the Enter key on your remote repeatedly until a
message appears saying “You are now a developer.”

4. Navigate to the Preferences row and select Developer options .

5. Select USB Debugging and select On .

6. Connect a USB cable between your Android TV device and your computer.

 When you connect the USB cable to your computer, you may see an “Allow USB Debugging”
message appear; you can then select to always allow or just for this time. Once you have done
that, running the adb command from a console or terminal window should show the Android

https://github.com/bumptech/glide

ptg16707593

262 Chapter 19 Android TV

TV device. Once it appears in the list, you can then use Android Studio or the adb command to
start working with and debugging your app.

 If you do not have an Android TV device, you can still create an emulator using the AVD
Manager. Either you can create a manual emulator, or you can follow the wizard by following
these steps:

■ Select “TV” for the Category type.

■ Select a TV size and resolution that you wish to emulate and then click Next.

■ Select the version of Android TV that wish to run on the emulator as well as the CPU
type. (Note that on most systems, selecting an x86 will yield a faster running emulator.)
Click Next.

■ Confirm the device settings, or use the buttons and fields to make changes. (Note
that changing the Android TV to run in Portrait orientation is possible, but not
recommended). Click Next.

■ Wait for the emulator to be built, select the emulator, and then click the launch icon to
start the AVD.

 Note that when you are emulating a TV, either you need a monitor with a higher resolution
than the AVD or you need to scale the AVD.

 There are two ways you can scale the AVD:

■ You can open the AVD Manager and click the Edit button (the icon that looks like a
pencil) for your Android TV AVD and then change the Scale setting to scale to make the
AVD appear larger or smaller on your monitor.

■ You can change your launch configuration to scale from inside of Android Studio. This
can be done by clicking Run in the File menu and then clicking Edit Configurations. In
the window that appears, find the Target Device section and click the Emulator radio
button and choose your AVD. Now scroll back up and click the Emulator tab. In this
section, there is a line labeled Additional Command Line options. In this field, enter
the percent you want the emulator to scale to. For example, if you want the emulator to
appear at 70% of normal size, type -scale 0.70 .

 Remember, testing with an emulator is not nearly as good as using an actual device to test
with. If you have the ability to get actual hardware, you should do so. This will allow you to
test with remotes, controllers, as well as other Bluetooth peripherals and devices.

 For simple testing with your emulator, you can use the arrow, Esc (for back), and Enter keys to
navigate your application.

ptg16707593

263Summary

 Summary

 In this chapter, you learned about Android TV and the various components that make up
differences between standard Android and Android TV applications.

 You learned that dealing with larger screens requires you to think differently to support the
features and size of a TV screen versus the smaller screen of phones and tablets. You learned
that the layout used on Android TV apps is focused on grids and Fragments.

 You also learned about the importance of visual styling. Because TVs are bigger and have
a variety of screen technologies in use, text, colors, and images are displayed differently.
Therefore, care should be taken to make sure your app is legible and clearly visible.

 You learned about the base components required to make an app work on Android TV, includ-
ing declarations for Leanback support. Leanback not only provides widgets, themes, and utili-
ties, but is necessary for your app to appear in the Google Play Store that is accessible from the
Android TV device. You also learned about other dependencies that the Leanback library needs
as well as some optional ones that will help you create better Android TV apps.

 Finally, you learned about testing your Android TV app on a physical device and an emula-
tor. You were informed about how to unlock developer mode on an actual Android TV device
and how to connect to it from your computer. You were then instructed on how to create an
emulator using the AVD Manager and how to scale it using two different methods to make
sure you can see your app on your computer regardless of the resolution of your monitor or
computer screen.

ptg16707593

This page intentionally left blank

ptg16707593

 20
 Application Deployment

 Once you have crafted the perfect app, you will need to deploy it. Application deployment is
the final step in releasing your app to users. This generally consists of cleaning your project and
creating an Android application package (APK). In this chapter, you learn about how to deploy
your app from Android Studio as well as preparing the necessary assets needed for a successful
launch in the Google Play Store.

 Preparing for Deployment

 Many developers only think of deploying as a means of taking code and releasing a package or
APK file that can be uploaded to Google Play and distributed through the Google Play Store.
Although this is definitely a major path for app release, there are other reasons to create and
distribute APK files.

 You may want to create an APK for the following:

■ A privateor contract app release

■ App testing with a remote group of users

■ Enterprise app management

■ Distribution in third-party app stores such as Amazon

 When you are ready to deploy, you need to create a production build of your app. You should
also make sure you have any external resources ready for use. Depending on the complexity
and the intended distribution method of your app, this process may require additional setup
and finalization before you can create your APK file.

ptg16707593

266 Chapter 20 Application Deployment

 Production Checklist

 Creating a checklist for production allows you to quickly and effectively publish your applica-
tion. This procedure is great to follow, whether you are a single developer or are working with a
team where each member can take a portion of the list and complete it.

 Not every item will be needed, and some steps may need to be added or expanded depend-
ing on your publishing target. For example, if you are building an enterprise app that will be
distributed internally without the need to publish it in an app store, you will probably want to
skip creating excess application marketing images and videos and a website; you may, however,
opt to spend some time on training materials instead.

 Regardless of your intended publication route, the following items will get you started in the
correct direction.

 Certificate Keys

 Certificates are used as cryptographic keys that ensure an application is authentic by means of
confirming that the publisher is using an authentic version of the app in their store. You are
required to generate a pair of keys and sign your app with them. This ensures that you control
the updates for the app and that you are the sole publisher to that app.

 Keeping your key in a safe and secure location is paramount because you will be unable to
update any apps you have created if you happen to lose your key. Keeping it in a secure loca-
tion prevents anyone else from using your key to forge and force an update to your users.

 Note that if you plan on distributing your app in the Google Play Store, your key must expire
after October 22, 2033. Any certificates expiring before that date will cause your app to be
rejected from being submitted.

 When you publish your app, you can opt to either include your own key in the build process
or use Android Studio to sign your application. Both have advantages and disadvantages.
Adding the key information to your build process may be a good idea if your publishing setup
is mostly automated with regular build cycles. Using Android Studio may be better if you work
with limited releases or do not have an automated system for building your app.

 Contact Email

 A contact email is a requirement for publishing an application on the Google Play Store, and is
also a good idea to include because users may need to ask you a question, request support, or in
some cases need to be walked through using your app to avoid a refund request.

 A contact email may be different from a support email, so you may be interested in providing
both. If you do not provide a support email, try to return any emails as soon as you get them
to avoid negative user experiences and reviews. When providing a support email, it would be
good to include an automatic reply that confirms you have received the original email and that
it is being assigned to a support team.

ptg16707593

267Production Checklist

 App Website

 Creating a website for your application is a good idea, not only because you can host your
policies, frequently asked questions, and contact information, but because you can leverage
search engines to pick up your app and distribute it. Depending on the app you are creating,
you can show in-depth videos and other marketing materials. It also gives you the option to
cross-sell or up-sell the user on different products or services that work with or in conjunction
with your app.

 Some of the most successful apps succeed due to offering cross-platform solutions with a
website that demonstrates how each piece works seamlessly with others to provide a service
that works no matter what device the user has.

 The app website can also be another social touch point that can give users more information
on sharing your app with their friends as well as any special contests or events that your app
may provide.

 External Services or Servers

 Making sure that your production servers are ready to go on launch day is an important part
of the release process. It may not seem like a big deal, but if you (or your marketing team)
have done your job building hype for your app, then it can be the make-or-break experi-
ence for many of your users. Few things are worse than a rush on launch day and seeing your
app servers crash due to demand and then watching the negative reviews pour in and seeing
another app welcome these users with open (and working) arms.

 External servers may be used for application resource sharing, handling user requests, messag-
ing, and keeping user information. You can mitigate some of the damage by building web
applications that scale, but you may also want to take advantage of the on-boarding process
that the Google Play Store offers. This allows you to roll out your application slowly, allowing
you to keep a watchful eye on your server logs and processes.

 Application Icon

 Depending on the structure of your development team, you may have opted to start developing
immediately with the default launcher icon rather than wait for a finished design icon. This is
perfectly fine, but requires that you remember to insert the production icon before you publish
your app.

 As a reminder, you should provide a launch icon in the following sizes:

■ LDPI : 36×36px

■ MDPI : 48×48px

■ HDPI : 72×72px

ptg16707593

268 Chapter 20 Application Deployment

■ XHDPI : 96×96px

■ XXHDPI : 144×144px

■ XXXHDPI : 192×192px

 Licensing

 Some applications require the user to agree to licensing terms in order to use the app. This
agreement allows both sides to come to an understanding of the policies and practices that you
have in place as a company or provider. This also gives you protection should a user decide to
pursue any legal claims that involve your app.

 License agreements are usually offered as an End User License Agreement (EULA) when you are
accessing, moving, using, or otherwise working with the personal data of a user. Many users are
comfortable giving you access to their data provided that you are not doing so maliciously and
that your app offers them a useful interface for their data. A EULA must be offered to the user
when they first launch your app, and if they refuse the agreement, the app must close.

 A EULA is not a requirement; however, some licensing should be offered with your app. This
protects your app from being taken and integrated or distributed without your knowledge and
potential gain. In the same vein, if you want your app to be taken and used by others, you can
offer a license that allows other developers and companies that ability.

 The following is a short list of open-source licenses you may want to use if you are open-
sourcing your app:

■ MIT : http://www.opensource.org/licenses/mit-license.php

■ GPL 2.0: http://www.gnu.org/licenses/gpl-2.0.html

■ GPL 3.0 : http://www.gnu.org/licenses/gpl-3.0.en.html

■ LGPL 3.0 : http://www.gnu.org/licenses/lgpl-3.0.html

■ Apache License 2.0 : http://www.apache.org/licenses/LICENSE-2.0

■ BSD 3-Clause : http://opensource.org/licenses/BSD-3-Clause

■ Creative Commons : https://creativecommons.org/choose/

 Appropriate Package Name

 The package name of your app is important for more than just the development of your app.
Android uses your package name as an actual location on the filesystem to store data and
information relative to your application. It also loads your package name into memory and
allocates resources based on your package name. You cannot use a package name that another
developer has chosen in order to protect applications from clashing and causing the system to
be unstable.

http://www.opensource.org/licenses/mit-license.php
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-3.0.en.html
http://www.gnu.org/licenses/lgpl-3.0.html
http://www.apache.org/licenses/LICENSE-2.0
http://opensource.org/licenses/BSD-3-Clause
https://creativecommons.org/choose/

ptg16707593

269Production Checklist

 For the previously mentioned reasons, it is a good idea to choose a package name based on
your company or website name. Because package names are very similar to domain names,
you could use a modified version as your package name. This also gives any users who see your
package name a clue as to whom a process or file system record belongs.

 As an example, if you owned the website www.dutsonpa.com and wanted to create an
Android app called Office Warfare, you might consider a package name of com.dutsonpa.
officewarfare . This name describes who created the app and what it is called. Depending
on your application deployment strategy, you could even modify it slightly to add version or
platform information. For example, if there were multiple platform versions, you mightcon-
sider using com.dutsonpa.android.officewarfare to show what platform this package was
specifically built for.

 Note that once you publish an app to the Google Play Store, you cannot change the package
name. Changing the package name registers an “updated” app as a “new” app instead. This
leaves fragmented apps behind and may confuse users who suddenly stop receiving app
updates and then notice two apps in the App Store with the same name.

 Verifying Permissions and Requirements

 Before you send your app into the wild, you should make sure you are sending it out with the
correct permissions, hardware requirements, and supported API level.

 The permissions your application states before installation are important because some users
will refuse to install your app if it even hints at potentially using personal data in a way that
they do not understand. Taking a few moments to make sure you know what permissions your
app requires can go a long way in making your app successful in the marketplace.

 You should take the time to check if you are requiring or restricting your app based on hard-
ware requirements. If you are, then now is an ideal time to double-check that you have all of
the permissions you need and have not left any out. Ratings slide quickly when users can see
and install your app but watch it constantly close without any explanation.

 The minimum API level of your application is important because it dictates which users can
install it based on the version of Android on their device. Setting the minimum API level low
is good for making sure that the maximum number of users can download your app.However,
you need to make sure the features you are using support that API level. This may be done with
some clever programming, or by including a support library.

 If you are not sure what level you should be targeting, you can view the official dashboard at
 https://developer.android.com/about/dashboards/index.html . This dashboard lists the current
distribution of active Android devices. Note that this list is generated by users who have the
Google Play Store installed.

http://www.dutsonpa.com
https://developer.android.com/about/dashboards/index.html

ptg16707593

270 Chapter 20 Application Deployment

 Log and Debug Removal

 In Chapter 18 , “Optimization,” you learned about memory usage and ways to make your app
run in a cleaner and more efficient manner. In continuing the optimization of your applica-
tion, you should remove all the debugging and logging from your final production application.
This saves the Android system from writing out excess logs that will never be read, and it saves
on embarrassing notices, toasts, messages, and other forms of debug values appearing inside of
the application.

 You will want to remove any calls to the Log class as well as remove the android:debuggable
property from the <application> element in your application’s manifest XML file. Other
debugging methods, such as startMethodTracing() and stopMethodTracing() , should also
be removed.

 Removal of Excess Unused Assets

 It is not uncommon to have extra assets collect in a project over time. These may include assets
that were cut during a release cycle, or ones that were used as placeholders until final art or
assets could be approved and integrated into the app.

 You should do your best to remove any test libraries, frameworks, extra JAR files that are not
needed, unused layouts, strings, and other files. Pay special attention to anything in your
/res/raw and /assets directories because files stored there may take up large amounts of
space. These files may also need to be updated to the latest version and may require you to
remove files that will no longer be used.

 Because every byte of data matters, it is in your best interest to remove as much excess data
as possible before you compile and publish your app. Because the space of a single APK file is
limited and a user has to download that entire file before they can use your app, you need to
be as thorough as possible in cleaning out your app before publishing.

 Preparing for Google Play

 When distributing your app through the Google Play Store, you have a few more requirements
in order to successfully upload and launch your app. As the Google Play Store has matured, it
has provided requirements that it has found increase user adoption and that help you feature
and promote your app.

 If you have not already created a Developer Account with Google, start by visiting https://
play.google.com/apps/publish/signup/ and signing in with your Google Account. After you
sign up, you need to accept a distributor agreement and pay a one-time fee of $25.

 Once you are a registered developer, you can log into your Google Play Developer Account by
visiting https://play.google.com/apps/publish/ . After logging in, you can either add a new appli-
cation or work with existing ones. By using the Add New Application button, you are prompted
to name your application and either upload an APK or prepare the store listing of your app.

https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/

ptg16707593

271Preparing for Google Play

Note that both of these options must be completed before your app will be listed in the Google
Play Store.

 Application Screenshots

 You are allowed to place eight images per form-factor on which your app will run. This means
that you can place eight images for the following:

■ Phone

■ Tablet

■ Android TV

■ Android Wear

 You must provide at least two images in either JPEG or PNG format without any transpar-
ency. Images must have a dimension of 320px and a maximum dimension of 3840px, with
the maximum being no larger than twice as long as the minimum dimension. It is best to use
images that show the functionality of your app and to use actual screenshots of your app in use
rather than just promotion or marketing materials.

 Note that if you want your application to be featured in the “Designed for Tablets” section of
the Google Play Store, you will need to provide tablet-sized images.

 You should also be aware that images for Android TV will only appear in the Google Play Store
that is used on Android TV devices and not in the same store that tablets and phones use.

 Promo Video

 You may consider placing a video for your app that highlights the features and shows the app
in action. This may also be a trailer or gameplay video that shows your app off in a produced
manner. This way, a user can see what your app is like in actual use without having to down-
load and install it first.

 Videos must be hosted on YouTube and must not be restricted by age in order to be viewed.
You must also make sure the YouTube link you use for your listing is a direct link to your video
and not to a playlist or profile page.

 When you use a promotional video, it will be shown on the app page as the first viewable
graphic asset. This means that if you have uploaded eight other screenshots, the video will
appear before these to encourage users to view the video content.

 High-Res Icon

 The high-res icon is both similar and different from the launch icon you included in your app.
The high-res icon is displayed on the Google Play Store in the cards that display apps as well

ptg16707593

272 Chapter 20 Application Deployment

as on the listing page at the top. Because of this, it should be very close if not identical to the
launch icon.

 The high-res icon should be a 32-bit PNG (with alpha) sized at 512×512px with a maximum file
size of 1MB.

 Feature Graphic

 The feature graphic is used on the listing page of your app and may be used on other pages or
sections of the Google Play Store to highlight and show off your app. This image should high-
light the creativity of your app, along with easy-to-read text showing the name of your app.

 Note that you should avoid text other than the name of your app, and assets should be
centered in the image. You should also avoid adding your launch or high-res icon in the image.
This is a promotional standalone image that should complement your other assets rather than
repeat them.

 If you have added a promotional video to your app listing, then a Play button will be placed in
the center of the feature graphic allowing users to view your promotional video when tapped
or clicked.

 The feature graphic should be either a JPEG or a 24-bit PNG (no transparency) with dimensions
of 1024×500px.

 Promo Graphic

 The promo graphic is no longer a required asset and has been replaced by the feature graphic,
which is an image that is used in versions of the Google Play Store or Android Market on
devices running on Android earlier than 4.0.

 The promo graphic should be treated in the same manner as the feature graphic; however,
it does have a smaller dimension. It should be a JPEG or 24-bit PNG (no transparency) with
dimensions of 180×120px.

 Banner for Android TV

 The banner is similar to the high-res icon, only it is displayed on Android TV devices only
rather than being displayed on phones and tablets. Even though it is called a banner, it has
relatively small dimensions.

 The banner image should be a JPEG or 24-bit PNG (no transparency) with dimensions of
320×180px.

 Getting Paid

 If you are planning on charging for your app, you will need to link your Google Play Developer
Account to the Google Payments Merchant Center. The Google Payments Merchant Center

ptg16707593

273APK Generation

is where your business information will be stored and will require your legal business name,
address, phone number, and the name that will appear on creditcard statements when a trans-
action is made.

 If you already have a Google Play Developer Account and a Google Payments Merchant Center
Account, you can link them together by logging into your Google Play Developer Account
and clicking the Reports link and then choosing the Financial Reports option. This displays a
message prompting you to set up your merchant account.

 APK Generation

 APK files are generated when the build process runs on your app. That said, the APK generated
is usually signed with a debugging key that renders the APK useful for testing, but not usable
for distribution. There are ways to sign an already generated APK, but the easiest way to make
sure your application is signed and generated correctly is to use the built-in tooling of Android
Studio.

 Using Android Studio, the signing and APK generation of your app goes as follows:

1. Open your project in Android Studio.

2. Click the Build menu item and then click Generate Signed APK.

3. In the window that appears, select the app module of your app in the Module Selection
box and click Next.

4. Select the keystore (certificate container with an extension of .jks) you want to use to
sign the app. If you do not have one, you can generate one at this step by clicking the
Create New... button, choosing a secure place to store the generated keystore file, and
entering the information requested.

5. After you have either created a keystore or selected one and typed in the required
passwords, click the Next button to continue.

6. Choose where to store the generated APK file as well as the “release” for the build type.
Note that if you have multiple Gradle build configurations, you will have an option to
select the one you want to use. Click the Finish button after you make your selection to
start building the APK for your app.

 When the process has completed, you can take the generated APK file and upload it to the
Google Play Developer Console. If you are not planning on distributing your app through the
Google Play Store, you can now use the generated APK file through other means of distribution.

 If you plan on giving the APK file to other users, note that they will need to configure their
Android device to install from “unknown sources.” This is done through the device settings
under Settings, Security. The user sees a message informing them that trusting unknown
sources may make their device and personal data vulnerable to attack and that they agree to be
solely responsible for any damage, loss, or theft that occurs from installing unknown apps.

ptg16707593

274 Chapter 20 Application Deployment

 After enabling Unknown Sources, the user can select an APK file through a file manager or
similar utility and then launch it. Android recognizes the file and prompts the user to install
the app, showing them a list of requested permissions and giving them an opportunity to
decline the installation. Once approved, the app will be installed and is accessible in the app
drawer.

 Summary

 In this chapter, you learned about the process of publishing an app. This began with a
suggested checklist you should look over to make sure you are ready to publish and distribute
your app. You learned about the importance of including these items and were given informa-
tion on why each item on the list should be included or at least considered.

 You learned about the assets required by the Google Play Store in order to make your app
launch more successful, and even some extra assets such as promotional videos that will help
you sell users on trying out and using your app.

 Finally, you learned about using Android Studio to generate a signed APK file with a step-by-
step guide for either selecting or creating a keystore for signing your app and creating the APK
file. You were also informed of the potential problem of distributing your app outside of the
Google Play Store and how users will need to enable or “opt into” allowing apps to be installed
from unknown sources.

ptg16707593

Index

 A
 ACCESS_COARSE_LOCATION permission,

 139 - 140

 ACCESS_FINE_LOCATION permission, 140

 ACCESS_NETWORK_STATE permission, 127

 accessing

 content providers, 100

 Internet, 127 - 130

 HTTP clients, 129 - 130

 mobile data connectivity,
detecting, 128

 network detection, 127 - 128

 Wi-Fi connectivity, detecting, 128

 AccountManager class, 187

 ACTION_NDEF_DISCOVERED intent,

filtering, 177 - 178

 ACTION_TAG_DISCOVERED intent, filtering,

 179 - 181

 ACTION_TECH_DISCOVERED intent, filtering,

 178 - 179

 Activities, 48 - 51

 adding to manifests folder, 49

 callback methods, 50 - 51

 creating, 48 - 49

 Fragments, adding, 55 - 56

 lifecycle, 49 - 51 , 101 - 102

 Loaders, 56 - 57

 Location API, 148 - 153

 location reporting application, 140 - 144

ptg16707593

276 Activity-selection screen (Android Studio)

 manifests folder, 34 - 36

 starting, 4 - 9

 testing folders, creating, 18

 Recent Projects list, 4

 website , xv , 2

 Welcome Screen, 4

 Android TV, 251 - 252 . See also TVs

 advertisement services, 253

 app banners, 256 - 257 , 272

 apps, building, 258 - 261

 bitmaps, 258

 controls, 253

 debugging, 261 - 262

 device emulators, 262

 Focused state, 253

 guidelines

 color, 256

 text, 255 - 256

 Leanback, 252

 LinearLayout, 254

 recommendations, 257 - 258

 ten-foot view, 252 - 254

 web resources, 253

 widgets, 258

 Android Wear, 217 - 218

 BoxInsetLayout class, 219 - 220

 communicating with, 224 - 228

 notifications, 224 - 226

 sending data, 226 - 228

 comparing Wear and Android
devices, 218

 devices, connecting to, 222 - 224

 emulators, 221 - 222

 WatchViewStub class, 218 - 219

 Wearable UI Library, 218

 Activity-selection screen (Android Studio), 6

 ADT (Android Development Tools), 1

 migrating to Android Studio, 3 - 4

 advertisement services for Android TV, 253

 alpha, 118

 AnalogClock view, 60

 android avd command, 11

 Android Backup Services, 187 - 191

 Backup Service Key, 189 - 190

 preferences, backing up, 190 - 191

 Android Developers Blog, xv

 Android developers page (YouTube), xv

 Android Device Monitor, application

profiling, 26 - 27

 Android Player, website, 13

 Android SDK, xv

 downloading, 9

 Android SDK Manager, 10

 Android Source Code website, xv

 Android Studio, 1 - 2

 Activity-selection screen, 6

 Android TV apps, building, 258 - 261

 AVD Manager, launching, 11

 build problems, troubleshooting, 6 - 7

 Build Variants window, 19

 Design view, 7

 features, 8 - 9

 Gradle build system, 2

 installing, 2 - 4

 migration from ADT, 3 - 4

 Preview pane, 8

 projects

 closing, 9

 Gradle build system, 41 - 42

 java folder, 36 - 37

ptg16707593

277 applications

 Google Fit, 207

 Location API, 148 - 153

 Nearby API, 209 - 214

 Nearby Messages API

 enabling, 209 - 210

 sending and receiving messages,
 210 - 214

 NFC, 176 - 181

 ACTION_NDEF_DISCOVERED
intent, filtering, 177 - 178

 ACTION_TAG_DISCOVERED
intent, filtering, 179 - 181

 ACTION_TECH_DISCOVERED
intent, filtering, 178 - 179

 NDEF messages, 176

 permissions, 177

 tags, 176 - 177

 app widgets, 85 - 86

 adding to lock screen, 92

 Android TV, 258

 AppWidgetProvider class, 94 - 96

 AppWidgetProviderInfo object, 89 - 93

 creating, 85 - 86

 layouts, 86 - 89

 home screen, 92 - 93

 sizing, 89 - 90

 XML layout file, 86 - 89

 manifest file entries, 96

 preview image, 90 - 92

 resizing, 93

 update frequency, 90

 Appium, 20

 Application object, extending, 239 - 241

 applications

 Android TV apps, building, 258 - 261

 asynchronous processing, 104 - 106

 animation, 117 - 125

 drawable animation, 122

 defining in XML, 122

 property animation, 118 - 121

 AnimatorSet subclass, 121

 defining in XML, 119

 ObjectAnimator subclass, 120 - 121

 ValueAnimator subclass, 120

 scale effect, 118

 transition framework, 123 - 125

 defining in XML, 123 - 124

 fade out/in transitions, 125

 view animation, 117 - 118

 alpha, 118

 creating, 118

 interpolators, 118

 rotate effect, 118

 translate effect, 118

 AnimatorSet subclass, 121

 annotations, 19

 ANR (Application Not Responding)

notices, 21

 APIs

 Bluetooth

 enabling, 168 - 169

 scanning for devices, 169 - 170

 stages of communication, 167 - 168

 device sensors, 181 - 185

 detecting, 182 - 183

 reading data, 183 - 185

 Google Drive Android API, 191 - 195

 client, creating, 191 - 192

 reading files, 193 - 194

 registering applications with
Developers Console, 191

 retrieving files, 193

 writing to files, 194 - 195

ptg16707593

278 applications

 audio

 playback, 156 - 159

 recording, 159 - 161

 supported codecs, 155

 authentication, Google Fit, 207 - 208

 available memory, displaying, 27

 AVD (Android Virtual Device), 3 , 11 - 12

 scaling, 262

 virtual devices

 cloning, 11

 scaling, 11

 AVD Manager

 launching, 11

 Wear emulator, creating, 221 - 222

 B
 backing up

 preferences, 190 - 191

 user data, 188 - 191

 Backup Service Key, 189 - 190

 bitmaps, 107 - 111

 memory usage, 107 - 108

 NinePatch, 109 - 111

 Draw 9-patch utility, 110 - 111

 scaling, 108 - 109

 BLE (Bluetooth low energy), 167

 communicating with, 173 - 176

 GATT, 173

 scanning for devices, 170

 blogs, Android Developers Blog , xv

 Bluetooth

 BLE

 communicating with, 173 - 176

 GATT, 173

 discovery stage, 167

 enabling, 168 - 169

 components

 Activities, 48 - 51

 Fragments, 52 - 57

 Intents, 45 - 48

 deployment

 preparing for, 265

 production checklist, 266 - 270

 Google Services, enabling, 229 - 230

 location reporting

 Activity, 140 - 148

 layouts, 147 - 148

 services, 144 - 146

 optimizing

 Application object, extending,
 239 - 241

 logging, 241 - 242

 versioning your configuration,
 242 - 243

 profiling, 25 - 27

 registering with Android Backup
Service, 189

 registering with Developers
Console, 191

 AppWidgetProvider class, 94 - 96

 callback methods, 94

 methods, 95 - 96

 AppWidgetProviderInfo object, 89 - 93

 aspect ratio, 254

 Assert, What a Terrible Failure log level, 30

 asynchronous processing, 104 - 106

 AsyncTask, 105 - 106

 worker threads, 104 - 105

 AsyncTask, 105 - 106 , 133 - 135

 network handling, 133 - 135

 attributes, manifest file, 35

ptg16707593

279 components

 SoundPool, 156 - 159

 WatchViewStub class, 218 - 219

 cloning virtual devices, 11

 closing

 Android Studio projects, 9

 HTTP connections, 129

 coarse location data, permissions, 139 - 140

 code repositories

 Git, 14 - 15

 Mercurial, 15

 Subversion, 14

 codecs

 supported audio codecs, 155

 supported video codecs, 161

 CollabNet, 14

 color, guidelines for Android TV, 256

 columns, table layout, 79 - 81

 commands, android avd, 11

 communicating

 with Android Wear, 224 - 228

 notifications, 224 - 226

 sending data, 226 - 228

 with BLE, 173 - 176

 with Fragments, 55 - 56

 comparing Wear and Android devices, 218

 components

 Activities, 48 - 51

 callback methods, 50 - 51

 creating, 48 - 49

 lifecycle, 49 - 51

 Fragments, 52 - 57

 adding to Activities, 55 - 56

 communicating with, 55 - 56

 creating, 52 - 55

 lifecycle, 53 - 55

 methods, 52 - 53

 exploration stage, 168

 Generic Access Profile, 167

 interaction stage, 168

 scanning for devices, 169 - 170

 Bluetooth Classic, 167 , 171 - 173

 bound state (services), 103

 BoxInsetLayout class, 219 - 220

 broadcast receivers, 47 - 48

 build problems, troubleshooting in Android

Studio, 6 - 7

 Build Variants window (Android Studio), 19

 build.gradle files, 42

 Business license (GenyMotion), 13

 buttons, 59

 C
 callback methods

 Activities, 50 - 51

 AppWidgetProvider class, 94

 cancelDiscovery() method, 169

 capturing heap dumps, 26 - 27

 CardView view, 66 - 67

 Cast API, MediaRouteButton, 62

 cells, sizing widgets, 89 - 90

 Certificate Authorities, 130

 CheckUrlTask class, 134

 child elements, aligning, 74 - 76

 classes

 AccountManager, 187

 AppWidgetProvider, 94 - 96

 AppWidgetProvider class

 callback methods, 94

 methods, 95 - 96

 BoxInsetLayout class, 219 - 220

 CheckUrlTask, 134

 singletons, 137

ptg16707593

280 components

 location reporting application, 140 - 148

 Activity, 140 - 144

 layouts, 147 - 148

 services, 144 - 146

 queues with Volley, 135 - 136

 view animation, 118

 widgets, 85 - 86

 Cupcake , xiv

 custom dimensions, 236

 custom timings, 235 - 236

 custom views, creating, 68 - 70

 D
 DDMS (Dalvik Debug Monitor Server), 29

 Debug log level, 30

 debugging, 25 - 32 . See also testing

Android TV, 261 - 262

 Android Wear, 222 - 224

 messaging, 29 - 32

 profiling, 25 - 27

 available memory, displaying, 27

 heap dumps, capturing, 26 - 27

 tracing, 27 - 28

 declaration, manifest file, 34

 deploying applications

 APK generation, 273 - 274

 Google Play Store

 Android TV banners, 272

 charging for your app, 272 - 273

 feature graphic, 272

 high-res icon, 271 - 272

 promo graphic, 272

 promo video, 271

 screenshots, 271

 Intent filters, 46 - 47

 Intents, 45 - 48

 broadcast receivers, 47 - 48

 explicit Intents, 45

 implicit Intents, 46

 Loaders, 56 - 57

 connecting to the Internet, 127 - 130

 HTTP clients, 129 - 130

 network detection, 127 - 128

 Wi-Fi connectivity, detecting, 128

 ConnectivityManager, 128

 containers, 249

 layouts

 frame layout, 81 - 83

 linear layout, 74 - 77

 relative layout, 77 - 79

 table layout, 79 - 81

 content providers, 100 - 101

 accessing, 100

 deleting data from, 101

 inserting data, 100

 updating, 100

 Controller (MVC architecture), 102 - 104

 controlling layouts, 71

 CPU, profiling, 25 - 27

 creating

 Activities, 48 - 49

 broadcast receivers, 47 - 48

 custom views, 68 - 70

 Fragments, 52 - 55

 Intents

 explicit Intents, 46

 implicit Intents, 46

ptg16707593

281drawable folder

 projects, starting, 6 - 9

 Recent Projects list, 4

 website, 2

 Welcome Screen, 4

 Android TV apps, building, 258 - 261

 Android Wear, 217 - 218

 asynchronous processing, 104 - 106

 Google Services, enabling, 229 - 230

 JDKs, 3

 MVC architecture, 99

 content providers, 100 - 101

 Controller, 102 - 104

 services, 102 - 104

 views, 101 - 102

 patterns, xiv

 device emulators, 10 - 13

 Android TV, 262

 Android Wear, 221 - 222

 AVD, 11 - 12

 GenyMotion, 12 - 13

 licensing, 13

 virtual devices

 cloning, 11

 profiling, 25 - 27

 Xamarin Android Player, 13

 dimensions, sizing widgets, 89 - 90

 discovery stage (Bluetooth), 167

 documentation for OpenGL ES, 117

 downloading

 Android SDK, 9

 Oracle VM Virtual Box, 12

 dp (density-independent) pixels, 72 - 73

 Draw 9-patch utility, 110 - 111

 drawable animation, 122

 defining in XML, 122

 drawable folder, 37 - 38

 preparing for, 265

 production checklist, 266 - 270

 certificate keys, 266

 contact email, 266

 external services, 267

 launcher icon, 267 - 268

 licensing, 268

 package name, 268 - 269

 removal of excess unused
assets, 270

 verifying permissions, 269

 Design view (Android Studio), 7

 detecting

 network connectivity, 127 - 128

 mobile data connectivity, 128

 Wi-Fi, 128

 sensors, 182 - 183

 “Developer mode”, enabling on Android

device, 25

 development . See also debugging;

emulators; testing

ADT, 1

 migrating to Android Studio, 3 - 4

 Android

 minimum requirements , xv

 websites

 Android Studio, 1 - 2

 Activity-selection screen, 6

 build problems, troubleshooting,
 6 - 7

 Build Variants window, 19

 Design view, 7

 features, 8 - 9

 Gradle build system, 2

 installing, 2 - 4

 Preview pane, 8

ptg16707593

282 drawables

 file structure of projects

 java folder, 36 - 37

 manifests folder, 34 - 36

 Activities, adding, 49

 res folder, 37 - 41

 drawable subfolder, 37 - 38

 layout subfolder, 39

 menu subfolder, 39

 values subfolder, 40 - 41

 fine location data, permissions, 140

 Fitness API, enabling, 207 - 208

 Focused state, 253

 folders

 java folder, 36 - 37

 manifests folder, 34 - 36

 Activities, adding, 49

 res folder, 37 - 41

 drawable subfolder, 37 - 38

 layout subfolder, 39

 menu subfolder, 39

 values subfolder, 40 - 41

 testing folders, creating, 18

 for loops, 248 - 249

 Fragments, 52 - 57

 adding to Activities, 55 - 56

 communicating with, 55 - 56

 creating, 52 - 55

 lifecycle, 53 - 55

 Loaders, 56 - 57

 methods, 52 - 53

 views, 55

 frame layout, 81 - 83

 overlays, 81 - 82

 WebView view, 82 - 83

 drawables, 111 - 114

 primitive shapes, 111 - 113

 system drawables, 113 - 114

 E
 Eclipse IDE, 1

 ecocommerce, 235

 elements in manifest file, 35 - 36

 emulators, 10 - 13

 Android TV, 262

 Android Wear, 221 - 222

 AVD, 11 - 12

 GenyMotion, 12 - 13

 licensing, 13

 virtual devices

 cloning, 11

 heap dumps, capturing, 26 - 27

 profiling, 25 - 27

 scaling, 11

 Xamarin Android Player, 13

 Error log level, 30

 EULA (End User License Agreement), 268

 events, 233 - 234

 explicit Intents, 45

 creating, 46

 exploration stage (Bluetooth), 168

 extending the Application object, 239 - 241

 F
 fade out/in transitions, 125

 features

 of Android Studio, 8 - 9

 of Git, 15

 of Google Analytics, 232 - 233

 of Mercurial, 15

 of Subversion, 14

ptg16707593

283Google Play Services

 features, 232 - 233

 funnels, 234

 goals, 234

 Google API Client, connecting to Google

Play Services, 203 - 206

 Google Drive Android API, 191 - 195

 applications, registering with
Developers Console, 191

 client, creating, 191 - 192

 reading files, 193 - 194

 retrieving files, 193

 writing to files, 194 - 195

 Google Fit, 207 - 209

 APIs, 207

 authentication, 207 - 208

 configuring, 208 - 209

 Google Payments Merchant Center,

 272 - 273

 Google Play Games Services, 195 - 199

 game saving, adding, 196 - 197

 loading saved games, 197 - 199

 Snapshots, 197

 Google Play Services, 201

 adding to Gradle file, 202

 available services, 202

 compiling, 202

 connecting to, 203 - 206

 Google Fit, 207 - 209

 APIs, 207

 authentication, 207 - 208

 configuring, 208 - 209

 Fitness API, enabling, 207 - 208

 initial setup, 201

 Location API, 148 - 153

 Nearby API, 209 - 214

 frameworks

 Robotium automation framework, 20

 transition framework, 123 - 125

 Free license (GenyMotion), 13

 functions

 getMemoryClass(), 244

 helper functions, 74

 funnels, 234

 Fused Location Provider, 148

 G
 game saving, adding to Google Play Games

Services, 196 - 197

 garbage collection

 minimizing, 244

 monitoring, 245

 GATT (Generic Attribute Profile), 173

 Generic Access Profile, 167

 GenyMotion, 12 - 13

 licensing, 13

 getActivity() method, 55

 getLoaderManager() method, 56

 getMemoryClass() function, 244

 getResponseCode() method, 133

 GLSurfaceView, setting up, 115 - 117

 goals (Google Analytics), 234

 Google accounts, retrieving from devices,

 187 - 188

 Google Analytics

 available statistics, 232

 custom dimensions, 236

 custom metrics, 236 - 237

 custom timings, 235 - 236

 ecocommerce, 235

 enabling, 230 - 232

 events, 233 - 234

ptg16707593

284 Google Play Services

 Gradle build system, 2 , 41 - 42

 build.gradle files, 42

 Google Play Services, adding, 202

 gradle.build file, adding support for
JUnit, 18

 graphics . See also images

bitmaps, 107 - 111

 memory usage, 107 - 108

 scaling, 108 - 109

 drawables, 111 - 114

 shapes, 111 - 113

 system drawables, 113 - 114

 NinePatch, 109 - 111

 OpenGL ES, 114 - 117

 adding to manifest file, 114 - 115

 documentation, 117

 GLSurfaceView, setting up, 115 - 117

 NDK, 117

 texture compression, 115

 guidelines for Android TV

 color, 256

 text, 255 - 256

 H
 hasResolution() method, 204

 heap dumps, capturing, 26 - 27

 helper functions, 74

 home screen, widgets

 adding, 92

 layouts, 92 - 93

 Hovered state, 253

 HTTP clients, 129 - 130

 Nearby Messages API

 enabling, 209 - 210

 sending and receiving messages,
 210 - 214

 override methods, 204 - 206

 Google Play Store, listing your app with

 Android TV banners, 272

 charging for your app, 272 - 273

 feature graphic, 272

 high-res icon, 271 - 272

 promo graphic, 272

 promo video, 271

 screenshots, 271

 Google Services, enabling, 229 - 230

 Google (Android) TV, 251 - 252 . See also TVs

 advertisement services, 253

 app banners, 256 - 257 , 272

 apps, building, 258 - 261

 bitmaps, 258

 controls, 253

 debugging, 261 - 262

 device emulators, 262

 Focused state, 253

 guidelines

 color, 256

 text, 255 - 256

 Leanback, 252

 LinearLayout, 254

 recommendations, 257 - 258

 ten-foot view, 252 - 254

 web resources, 253

 widgets, 258

 GPS

 coarse location data, permissions,
 139 - 140

 fine location data, permissions, 140

ptg16707593

285layout folder

 Intents, 45 - 48

 ACTION_NDEF_DISCOVERED intent,
filtering, 177 - 178

 ACTION_TAG_DISCOVERED intent,
filtering, 179 - 181

 ACTION_TECH_DISCOVERED intent,
filtering, 178 - 179

 broadcast receivers, 47 - 48

 explicit Intents, 45

 creating, 46

 implicit Intents, 46

 creating, 46

 interaction stage (Bluetooth), 168

 Internet, accessing, 127 - 130

 INTERNET permission, 127

 interpolators, 118

 J
 Java, similarity to Android , xiv

 java folder, 36 - 37

 JDKs (Java Development Kits), 3

 JetBrains IntelliJ IDEA, 1

 website, 9

 JRE (Java Runtime Environment), 3

 JsonArrayRequests, 137

 JsonObjectRequests, 137

 JUnit

 adding support for in gradle.build
file, 18

 annotations, 19

 K-L
 KeyboardView view, 60 - 61

 launching AVD Manager, 11

 layout folder, 39

 I
 IDEs (integrated development

environments) . See also development

Eclipse, 1

 emulators, 10 - 13

 AVD, 11 - 12

 GenyMotion, 12 - 13

 Xamarin Android Player, 13

 JDKs, 3

 JetBrains IntelliJ IDEA, 1

 website, 9

 imageRequests, 137

 images

 bitmaps, 107 - 111

 memory usage, 107 - 108

 NinePatch, 109 - 111

 scaling, 108 - 109

 drawables, 111 - 114

 primitive shapes, 111 - 113

 system drawables, 113 - 114

 ImageView view, 60

 implicit Intents, 46

 creating, 46

 Indie license (GenyMotion), 13

 Info log level, 30

 InformIT, book registration, xvi

 installing Android Studio, 2 - 4

 OS X, 2 - 3

 integration testing, 20 - 25 . See also unit

testing

 Monkey, 21 - 23

 monkeyrunner, 20 - 21

 UI Automation Viewer, 23 - 25

 intended audience for this book , xiv

 Intent filters, 46 - 47

ptg16707593

286 layouts

 Loaders, 56 - 57

 loading saved games (Google Play),

 197 - 199

 Location API, 148 - 153

 location data

 Fused Location Provider, 148

 Location API, 148 - 153

 permissions

 coarse location data, 139 - 140

 fine location data, 140

 reporting application, creating, 140 - 148

 Activity, 140 - 144

 layouts, 147 - 148

 services, 144 - 146

 lock screen, widgets

 adding, 92

 layouts, 92 - 93

 Log class, 29

 log levels, setting in LogCat, 30 - 31

 LogCat, 29 - 32

 log levels, setting, 30 - 31

 options, 29 - 30

 logging, application logging, 241 - 242

 M
 manifest file

 attributes, 35

 declaration, 34

 elements, 35 - 36

 Intent filters, 46 - 47

 OpenGL ES, adding as feature, 114 - 115

 permissions, 127

 updating for app widgets, 96

 manifests folder, 34 - 36

 Activities, adding, 49

 layouts, 71 - 74

 Android Wear, 218 - 219

 controlling, 71

 coordinates, 73 - 74

 frame layout, 81 - 83

 overlays, 81 - 82

 WebView view, 82 - 83

 linear layout, 74 - 77

 LinearLayout, 254

 location reporting application, 147 - 148

 measurements, 72 - 73

 dp, 72 - 73

 size groupings, 73

 sp, 73

 relative layout, 77 - 79

 table layout, 79 - 81

 transitioning between, 123 - 125

 widgets, 86 - 89

 home screen, 92 - 93

 sizing, 89 - 90

 XML layout file, 86 - 89

 Leanback, 252

 libraries

 Leanback, 252

 Volley, 135 - 137

 queues, creating, 135 - 136

 requests, 136 - 137

 licensing

 EULA, 268

 GenyMotion, 13

 lifecycle

 of Activities, 49 - 51 , 101 - 102

 of Fragments, 53 - 55

 linear layout, 74 - 77

 LinearLayout, 254

 ListView, 55

ptg16707593

287MVC (Model-View-Controller) architecture

 setPriority(), 152

 startDiscovery(), 169

 static methods, 248

 MIFARE Classic tags, 177

 migrating from ADT to Android Studio, 3 - 4

 minimizing garbage collection, 244

 minimum requirements for Android

development , xv

 mobile data connectivity, detecting, 128

 monitoring

 garbage collection, 245

 memory usage, 245 - 247

 Monkey, integration testing, 21 - 23

 monkeyrunner, 20 - 21

 multimedia

 audio

 playback, 156 - 159

 recording, 159 - 161

 supported codecs, 155

 video, 161 - 165

 playback, 162 - 165

 supported codecs, 161

 MVC (Model-View-Controller)

architecture, 99

 asynchronous processing, 104 - 106

 AsyncTask, 105 - 106

 worker threads, 104 - 105

 content providers, 100 - 101

 accessing, 100

 deleting data from, 101

 inserting data, 100

 updating, 100

 Controller, 102 - 104

 services, 102 - 104

 bound state, 103

 started state, 102

 views, 101 - 102

 measurements for layouts

 dp, 72 - 73

 size groupings, 73

 sp, 73

 MediaRouteButton view, 62

 memory

 available memory, displaying, 27

 images, storing, 107 - 108

 optimizing, 243 - 247

 IntentServices, 244

 minimizing garbage collection, 244

 Proguard, 244 - 245

 profiling, 25 - 27

 usage, monitoring, 245 - 247

 menu folder, 39

 Mercurial, 15

 messaging, 29 - 32

 LogCat

 log levels, setting, 30 - 31

 options, 29 - 30

 methods

 AppWidgetProvider class, 95 - 96

 cancelDiscovery(), 169

 Fragments, 52 - 53

 getActivity(), 55

 getLoaderManager(), 56

 hasResolution(), 204

 KeyboardView, 61

 onCreateLoader(), 57

 onLoaderReset(), 57

 onLoadFinished(), 57

 onPause(), 47 - 48

 onResume(), 47 - 48

 onUpdate(), 90

 registerReceiver(), 47 - 48

ptg16707593

288 navigating X/Y axis with remote (Android TV)

 O
 ObjectAnimator subclass, 120 - 121

 Official Android Development Site, xv

 onCreateLoader() method, 57

 onLoaderReset() method, 57

 onLoadFinished() method, 57

 onPause() method, 47 - 48

 onResume() method, 47 - 48

 onUpdate() method, 90

 OpenGL ES, 114 - 117

 documentation, 117

 GLSurfaceView, setting up, 115 - 117

 NDK, 117

 texture compression, 115

 operating systems, installing Android

Studio on OS X, 2 - 3

 optimizing

 applications

 Application object, extending,
 239 - 241

 logging, 241 - 242

 versioning your configuration,
 242 - 243

 memory management, 243 - 247

 IntentServices, 244

 minimizing garbage collection, 244

 Proguard, 244 - 245

 performance, 247 - 249

 containers, 249

 layouts, 248 - 249

 objects, 247 - 248

 static methods, 248

 Oracle VM Virtual Box, 12

 OS X operating system, installing Android

Studio on, 2 - 3

 overlays, 81 - 82

 overscan, 254

 N
 navigating X/Y axis with remote

(Android TV), 253

 NDEF (NFC Data Exchange Format)

messages, 176

 NDK (Native Development Kit), 117

 Nearby API, 209 - 214

 Nearby Messages API

 enabling, 209 - 210

 sending and receiving messages,
 210 - 214

 nested XML tags, parsing, 132 - 133

 network detection, 127 - 128

 mobile data connectivity,
detecting, 128

 Wi-Fi connectivity, detecting, 128

 networking, 127

 AsyncTask, 133 - 135

 HTTP clients, 129 - 130

 Volley, 135 - 137

 queues, creating, 135 - 136

 requests, 136 - 137

 NFC (Near Field Communication), 176 - 181

 ACTION_NDEF_DISCOVERED intent,
filtering, 177 - 178

 ACTION_TAG_DISCOVERED intent,
filtering, 179 - 181

 ACTION_TECH_DISCOVERED intent,
filtering, 178 - 179

 NDEF messages, 176

 permissions, 177

 tags, 176 - 177

 NinePatch, 109 - 111

 Draw 9-patch utility, 110 - 111

 notifications (Android Wear), 224 - 226

ptg16707593

289 publishing applications

 production checklist for application

deployment, 266 - 270

 certificate keys, 266

 contact email, 266

 external services, 267

 launcher icon, 267 - 268

 package name, 268 - 269

 profiling, 25 - 27

 ProgressBar view, 62 - 64

 projects

 Android Studio

 closing, 9

 starting, 4 - 9

 testing folders, creating, 18

 file structure

 java folder, 36 - 37

 manifests folder, 34 - 36

 res folder, 37 - 41

 Gradle build system, 41 - 42

 property animation, 118 - 121

 AnimatorSet subclass, 121

 defining in XML, 119

 ObjectAnimator subclass, 120 - 121

 ValueAnimator subclass, 120

 publishing applications

 APK generation, 273 - 274

 Google Play Store

 Android TV banners, 272

 charging for your app, 272 - 273

 feature graphic, 272

 high-res icon, 271 - 272

 promo graphic, 272

 promo video, 271

 screenshots, 271

 preparing for, 265

 P
 parsing XML, 131 - 133

 ignoring namespaces, 131

 nested tags, 132 - 133

 text values, retrieving, 131 - 132

 patterns , xiv

 performance

 optimizing, 247 - 249

 containers, 249

 for loops, 248 - 249

 objects, 247 - 248

 static methods, 248

 profiling, 25 - 27

 heap dumps, capturing, 26 - 27

 tracing, 27 - 28

 permissions

 location data

 coarse location data, 139 - 140

 fine location data, 140

 manifest file, 127

 NFC, 177

 verifying, 269

 pixels

 bitmaps, 107 - 111

 NinePatch, 109 - 111

 dp, 72 - 73

 playback

 audio, 156 - 159

 video, 162 - 165

 preferences, backing up, 190 - 191

 preparing for application deployment, 265

 Pressed state, 253

 Preview pane (Android Studio), 8

 previewImage property, 90 - 92

 primitive shapes, 111 - 113

ptg16707593

290 publishing applications

 resizing

 images, 108 - 109

 widgets, 93

 retrieving user accounts from devices,

 187 - 188

 Robotium automation framework, 20

 rotate effect (animation), 118

 rows, table layout, 79 - 81

 S
 saved games, loading in Google Play

Games Services, 197 - 199

 scale effect (animation), 118

 scaling

 AVD, 262

 images, 108 - 109

 virtual devices, 11

 scripts, integration testing with

monkeyrunner, 20 - 21

 SDKs

 Android SDK, downloading, 9

 Android SDK Manager, 10

 Selenium WebDriver, 20

 sensors, 181 - 185

 detecting, 182 - 183

 Google Fit, 207 - 209

 reading data, 183 - 185

 services, 102 - 104

 bound state, 103

 location reporting application, 144 - 146

 started state, 102

 services available in Google Play

Services, 202

 setPriority() method, 152

 shapes, 111 - 113

 singletons, 137

 production checklist, 266 - 270

 certificate keys, 266

 contact email, 266

 external services, 267

 launcher icon, 267 - 268

 licensing, 268

 package name, 268 - 269

 removal of excess unused
assets, 270

 verifying permissions, 269

 Python scripts, integration testing with

monkeyrunner, 20 - 21

 Q-R
 queues, creating with Volley, 135 - 136

 random events, throwing with

Monkey, 21 - 23

 reading

 device sensor data, 183 - 185

 files from Google Drive Android API,
 193 - 194

 sensor data, 183 - 185

 Recent Projects list (Android Studio), 4

 recommendations for Android TV, 257 - 258

 recording audio, 159 - 161

 RecyclerView view, 67

 registering

 applications

 with Android Backup Services, 189

 with Developers Console, 191

 this book at InformIT , xvi

 registerReceiver() method, 47 - 48

 relative layout, 77 - 79

 requests (Volley), 136 - 137

 res folder, 37 - 41

 drawable subfolder, 37 - 38

 menu subfolder, 39

ptg16707593

291tracing

 SurfaceView view, 64 - 65

 SVN. See Subversion

 system drawables, 113 - 114

 Systrace, 27 - 28

 T
 table layout, 79 - 81

 tags (NFC), 176 - 177

 ten-foot view, 252 - 254

 test classes

 annotations, 19

 writing, 18 - 19

 testing, 17

 integration testing, 20 - 25

 Monkey, 21 - 23

 monkeyrunner, 20 - 21

 UI Automation Viewer, 23 - 25

 unit testing, 17 - 20

 Appium, 20

 modules, 17

 Robotium automation
framework, 20

 test classes, writing, 18 - 19

 text, guidelines for Android TV, 255 - 256

 text values, retrieving from XML, 131 - 132

 texture compression, 115

 TextureView view, 65 - 66

 TextView view, 65

 threads

 UI, 104

 worker threads, 104 - 105

 throwing random events with

Monkey, 21 - 23

 Torvalds, Linus, 14

 tracing, 27 - 28

 size groupings for layouts, 73

 sizing

 images, 108 - 109

 widgets, 89 - 90

 Snapshots, 197

 sound packs, 159

 SoundPool class, 156 - 159

 sp (scale-independent pixels), 73

 Space view, 64

 StackOverflow website , xv

 stages of Bluetooth communication,

 167 - 168

 startDiscovery() method, 169

 started state (services), 102

 starting

 Android Studio projects, 4 - 9

 Activity-selection screen (Android
Studio), 6

 audio playback, 161

 AVD Manager, 11

 static methods, 248

 statistics available with Google

Analytics, 232

 storing

 code

 Git, 14 - 15

 Mercurial, 15

 Subversion, 14

 user data, 187 - 191

 styles for layouts

 frame layout, 81 - 83

 linear layout, 74 - 77

 relative layout, 77 - 79

 table layout, 79 - 81

 Subversion, 14

 features, 14

ptg16707593

292 transition framework

 UI Automation Viewer, 23 - 25

 UI/Application Exerciser Monkey

 Monkey, integration testing, 21 - 23

 unit testing

 Appium, 20

 Robotium automation framework, 20

 test classes

 annotations, 19

 writing, 18 - 19

 testing folders, creating for your
project, 18

 unregisterReceiver() method, 47 - 48

 update frequency for widgets, 90

 updating

 content providers, 100

 location data, 152

 manifest file

 app widgets, 96

 URI (Uniform Resource Identifier), 100

 user accounts

 Android Backup Services

 Backup Service Key, 189 - 190

 preferences, backing up, 190 - 191

 backing up, 188 - 191

 retrieving from devices, 187 - 188

 utilities

 Draw 9-patch, 110 - 111

 Widget Preview, 90 - 92

 zipalign, 244 - 245

 UUID (Universally Unique Identifer), 171

 V
 ValueAnimator subclass, 120

 values folder, 40 - 41

 Verbose log level, 30

 transition framework, 123 - 125

 defining in XML, 123 - 124

 fade out/in transitions, 125

 transitions, 117

 translate effect (animation), 118

 troubleshooting Android Studio build

problems, 6 - 7

 TVs

 aspect ratio, 254

 functionality, 255

 overscan, 254

 U
 UI

 layouts, 71 - 74

 controlling, 71

 coordinates, 73 - 74

 measurements, 72 - 73

 lock screen

 widgets, adding, 92

 threads, 104

 views, 59 - 68

 AnalogClock view, 60

 buttons, 59

 ImageView, 60

 KeyboardView, 60 - 61

 MediaRouteButton, 62

 ProgressBar, 62 - 64

 Space, 64

 SurfaceView, 64 - 65

 TextureView, 65 - 66

 TextView, 65

 ViewGroup, 66 - 67

 ViewStub, 68

ptg16707593

293widgets

 transitions, 117

 ViewGroup, 66 - 67

 CardView, 66 - 67

 RecyclerView, 67

 ViewStub, 68

 WebView, 82 - 83

 ViewStub view, 68

 virtual devices

 heap dumps, capturing, 26 - 27

 profiling, displaying available
memory, 27

 scaling, 11

 Volley, 135 - 137

 queues, creating, 135 - 136

 requests, 136 - 137

 W
 Warn log level, 30

 WatchViewStub class, 218 - 219

 Wearable UI Library, 218

 web resources for Android TV, 253

 websites

 Android development , xv

 Android Studio , xv , 2

 Git, 14

 Gradle, 42

 JetBrains IntelliJ IDEA, 9

 Robotium automation framework, 20

 Subversion, 14

 WebView view, 82 - 83

 Welcome Screen (Android Studio), 4

 Widget Preview utility, 90 - 92

 widgets, 85 - 86

 adding to lock screen, 92

 Android TV, 258

 AppWidgetProvider class, 94 - 96

 verifying permissions, 269

 version-control systems

 Git, 14 - 15

 Mercurial, 15

 Subversion, 14

 video

 playback, 162 - 165

 supported codecs, 161

 YouTube, Android developers page , xv

 view animation, 117 - 118

 alpha, 118

 creating, 118

 interpolators, 118

 rotate effect, 118

 scale effect, 118

 translate effect, 118

 ViewGroup view, 66 - 67

 CardView view, 66 - 67

 RecyclerView view, 67

 views, 59 - 68

 AnalogClock, 60

 buttons, 59

 custom views, creating, 68 - 70

 GLSurfaceView, setting up, 115 - 117

 ImageView, 60

 KeyboardView, 60 - 61

 ListView, 55

 MediaRouteButton, 62

 MVC architecture, 101 - 102

 overlays, 81 - 82

 ProgressBar, 62 - 64

 Space, 64

 SurfaceView, 64 - 65

 TextureView, 65 - 66

 TextView, 65

 transition framework, 123 - 125

ptg16707593

294 widgets

 parsing, 131 - 133

 ignoring namespaces, 131

 nested tags, 132 - 133

 text values, retrieving, 131 - 132

 property animations, defining, 119

 sample animation XML, 118

 shapes, defining, 112 - 113

 transition frameworks, defining,
 123 - 124

 values folder, 40 - 41

 XmlPullParser, 131

 X/Y axis

 navigating with remotes
(Android TV), 253

 obtaining layout coordinates, 73 - 74

 translate effect (animation), 118

 Y-Z
 YouTube, Android developers page , xv

z-index, frame layout, 81 - 83

 zipalign tool, 244 - 245

 AppWidgetProviderInfo object, 89 - 93

 creating, 85 - 86

 layouts, 86 - 89

 home screen, 92 - 93

 sizing, 89 - 90

 XML layout file, 86 - 89

 manifest file entries, 96

 preview image, 90 - 92

 resizing, 93

 update frequency, 90

 Wi-Fi connectivity, detecting, 128

 worker threads, 104 - 105

 writing

 to files with Google Drive API, 194 - 195

 test classes, 18 - 19

 WTF (Assert, What a Terrible Failure)

tag, 32

 X
 Xamarin Android Player, 13

 XML

 custom views, 69

 drawable animation, defining, 122

 layout folder, 39

 layouts, 71

 measurements, 72 - 73

 widget layout files, 86 - 89

 manifest file, 34 - 36

 attributes, 35

 declaration, 34

 elements, 35 - 36

 Intent filters, 46 - 47

 OpenGL ES, adding as feature,
 114 - 115

 permissions, 127

 updating for app widgets, 96

ptg16707593

This page intentionally left blank

ptg16707593

Addison-Wesley • Cisco Press • IBM Press • Microsoft Press • Pearson IT Certif ication • Prentice Hall • Que • Sams • VMware Press

REGISTER YOUR PRODUCT at informit.com/register

• Download available product updates.

• Access bonus material when applicable.

• Receive exclusive offers on new editions and related products.
(Just check the box to hear from us when setting up your account.)

• Get a coupon for 35% for your next purchase, valid for 30 days. Your code will
be available in your InformIT cart. (You will also find it in the Manage Codes
section of your account page.)

Registration benefits vary by product. Benefits will be listed on your account page
under Registered Products.

InformIT is the online home of information technology brands at Pearson, the world’s foremost
education company. At InformIT.com you can

• Shop our books, eBooks, software, and video training.
• Take advantage of our special offers and promotions (informit.com/promotions).
• Sign up for special offers and content newsletters (informit.com/newsletters).
• Read free articles and blogs by information technology experts.
• Access thousands of free chapters and video lessons.

Learn about InformIT community events and programs.

http://www.informit.com/register
http://www.informIT.com
http://www.informIT.com
http://www.informit.com/promotions
http://www.informit.com/newsletters
http://www.informit.com/community
http://www.informit.com

ptg16707593

You love our titles and you love to
share them with your colleagues and friends...why
not earn some $$ doing it!

If you have a website, blog, or even a Facebook
page, you can start earning money by putting
InformIT links on your page.

Whenever a visitor clicks on these links and makes
a purchase on informit.com, you earn commissions*
on all sales!

Every sale you bring to our site will earn you a
commission. All you have to do is post the links to
the titles you want, as many as you want, and we’ll
take care of the rest.

Apply and get started!
It’s quick and easy to apply.
To learn more go to:
http://www.informit.com/affiliates/
*Valid for all books, eBooks and video sales at www.informit.com

Join the

Informit
Affiliate Team!

	Cover
	Title Page
	Copyright Page
	Acknowledgments
	About the Author
	Contents
	Preface
	1 Development Tools
	Android Studio
	Installing Android Studio
	Using Android Studio
	Starting a New Project

	Standalone SDK Tools
	Android Device Emulation
	Android Virtual Device
	GenyMotion
	Xamarin Android Player

	Version-Control Systems
	Subversion
	Git
	Mercurial

	Summary

	2 Testing and Debugging
	Unit Testing
	Integration Testing
	Debugging
	Profiling
	Tracing
	Messaging

	Summary

	3 Application Structure
	Manifests
	Java
	Res (Resources)
	Drawable
	Layout
	Menu
	Values
	Other Resources

	Gradle
	Summary

	4 Components
	Intents
	Intent Filters
	Broadcast Receivers

	Activities
	Creating an Activity
	Activity Lifecycle

	Fragments
	Creating a Fragment
	Communicating with Fragments
	Loaders

	Summary

	5 Views
	The View Class
	The AnalogClock Subclass
	The ImageView Subclass
	The KeyboardView Subclass
	The MediaRouteButton Subclass
	The ProgressBar Subclass
	The Space Subclass
	The SurfaceView Subclass
	The TextView Subclass
	The TextureView Subclass
	The ViewGroup Subclass
	The ViewStub Subclass

	Creating a Custom View
	Summary

	6 Layout
	Layout Basics
	Layout Measurements
	Layout Coordinates

	Layout Containers
	Linear Layout
	Relative Layout
	Table Layout
	Frame Layout
	WebView

	Summary

	7 App Widgets
	App Widget Layouts
	The AppWidgetProviderInfo Object
	App Widget Sizing
	Update Frequency
	Preview Image
	Widget Category
	Widget Category Layout
	Resizable Mode
	Sample AppWidgetProviderInfo Object

	The AppWidgetProvider Class
	Application Manifest Entries
	Summary

	8 Application Design: Using MVC
	Model
	View
	Controller
	Working Asynchronously
	AsyncTask

	Summary

	9 Drawing and Animation
	Graphics
	Bitmaps
	NinePatch
	Drawables
	OpenGL ES

	Animation
	View Animation
	Property Animation
	Drawable Animation
	Transition Framework

	Summary

	10 Networking
	Accessing the Internet
	Network Detection
	Using an HTTP Client

	Parsing XML
	Handling Network Operations Asynchronously
	Volley
	Summary

	11 Working with Location Data
	Permissions
	Google Play Services Locations API
	Summary

	12 Multimedia
	Working with Audio
	Audio Playback
	Audio Recording

	Working with Video
	Video Playback

	Summary

	13 Optional Hardware APIs
	Bluetooth
	Enabling Bluetooth
	Discovering Devices with Bluetooth
	Connecting via Bluetooth Classic
	Communicating with BLE

	Near Field Communication
	ACTION_NDEF_DISCOVERED
	ACTION_TECH_DISCOVERED
	ACTION_TAG_DISCOVERED

	Device Sensors
	Detecting the Available Sensors
	Reading Sensor Data

	Summary

	14 Managing Account Data
	Getting Accounts
	Android Backup Service
	Using Google Drive Android API
	Using Google Play Games Services
	Working with Saved Games

	Summary

	15 Google Play Services
	Adding Google Play Services
	Using Google API Client
	Google Fit
	Enable API and Authentication
	App Configuration and Connection

	Nearby Messages API
	Enabling Nearby Messages
	Sending and Receiving Messages

	Summary

	16 Android Wear
	Android Wear Basics
	Screen Considerations
	Debugging
	Connecting to an Emulator
	Connecting to a Wear Device

	Communicating with Android Wear
	Notifications
	Sending Data

	Summary

	17 Google Analytics
	Adding Google Analytics
	Google Analytics Basics
	Events
	Goals
	Ecommerce
	Custom Timings
	Custom Dimensions
	Custom Metrics

	Summary

	18 Optimization
	Application Optimization
	Application First
	Application Logging
	Application Configuration

	Memory Management
	Garbage Collection Monitoring
	Checking Memory Usage

	Performance
	Working with Objects
	Static Methods and Variables
	Enhanced for Loops
	float, double, and int
	Optimized Data Containers

	Summary

	19 Android TV
	The Big Picture
	Ten-Foot View
	TV Capabilities
	Text, Color, and Bitmaps

	Building an App
	Emulation and Testing
	Summary

	20 Application Deployment
	Preparing for Deployment
	Production Checklist
	Certificate Keys
	Contact Email
	App Website
	External Services or Servers
	Application Icon
	Licensing
	Appropriate Package Name
	Verifying Permissions and Requirements
	Log and Debug Removal
	Removal of Excess Unused Assets

	Preparing for Google Play
	Application Screenshots
	Promo Video
	High-Res Icon
	Feature Graphic
	Promo Graphic
	Banner for Android TV
	Getting Paid

	APK Generation
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K-L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X
	Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

